
Graphics Layout Engine

GLE 4.3.5

User Manual

C. Pugmire, St.M. Mundt, V.P. LaBella, J. Struyf

https://glx.sourceforge.io/

2025/02/07

https://glx.sourceforge.io/

ii

Contents

1 Preface v

2 Tutorial 3
2.1 Installing GLE . 3
2.2 Running GLE . 3
2.3 Drawing a Line on a Page . 3
2.4 Drawing a Simple Graph . 5

3 Primitives 7
3.1 Graphics Primitives (a summary) . 7
3.2 Graphics Primitives (in detail) . 8

4 The Graph Module 23
4.1 Graph Commands (a summary) . 23
4.2 Graph Commands (in detail) . 24
4.3 Bar Graphs . 39
4.4 3D Bar Graphs . 40
4.5 Filling Between Lines . 40

4.5.1 Polar Plots . 41
4.6 Notes on Drawing Graphs . 42

4.6.1 Importance of Order . 42
4.6.2 Layers . 42
4.6.3 Line Width . 43

5 The Key Module 45
5.1 Global Commands . 46
5.2 Entry Definition Commands . 47
5.3 Defining the Key in the Graph Block . 48

6 Programming Facilities 51
6.1 Expressions . 51
6.2 Functions Inside Expressions . 51
6.3 Using Variables . 54
6.4 String constants . 54
6.5 Programming Loops . 55
6.6 If-then-else . 55
6.7 Subroutines . 56

6.7.1 Default Arguments . 56
6.8 Forward Declarations . 57
6.9 I/O Functions . 57
6.10 Device Dependent Control . 58

7 Advanced Features 59
7.1 Diagrams . 59

7.1.1 Named Boxes and the Join Command . 59
7.1.2 Object Blocks and Hierarchically Named Points . 61

7.2 LATEX Interface . 62

iii

iv CONTENTS

7.2.1 Example . 62
7.2.2 Using LaTeX Packages . 63
7.2.3 Using UTF-8 Encoding in GLE Scripts with LaTeX Expressions 63
7.2.4 Import a GLE Figure in a LaTeX Document . 64
7.2.5 The .gle Directory . 64

7.3 Filling, Stroking and Clipping Paths . 64
7.4 Colour . 65
7.5 GLE’s Configuration File . 66

8 QGLE: GLE’s Graphical User Interface 67

9 Surface and Contour Plots 69
9.1 Surface Primitives . 69

9.1.1 Overview . 69
9.1.2 Surface Commands . 69

9.2 Letz . 73
9.3 Fitz . 73
9.4 Contour . 73
9.5 Color Maps . 74

10 GLE Utilities 77
10.1 Fitls . 77
10.2 Manip . 78

10.2.1 Usage . 78
10.2.2 Manip Primitives (a summary) . 79
10.2.3 Manip Primitives (in detail) . 79

A Tables 85
A.1 Markers . 85
A.2 Functions and Variables . 85

A.2.1 General Program . 85
A.2.2 String or Text Manipulation . 86
A.2.3 Logical Operators . 86
A.2.4 Mathematical Operators, Constants, and Functions 86
A.2.5 Graphing . 88

A.3 LATEX Macros . 89
A.4 LATEX Symbols . 90
A.5 Fonts . 91
A.6 Font Tables . 92
A.7 Predefined Colors . 102
A.8 Wall Reference . 104

B Index 105

Chapter 1

Preface

Abstract

GLE (Graphics Layout Engine) is a graphics scripting language designed for creating publication quality
figures (e.g., a chart, plot, graph, or diagram). It supports various chart types (including function plot,
histogram, bar chart, scatter plot, contour plot, color map, and surface plot) through a simple but flexible
set of graphing commands. More complex output can be created by relying on GLE’s scripting language,
which is full featured with subroutines, variables, and logic control. GLE relies on LATEX for text output
and supports mathematical formulae in graphs and figures. GLE’s output formats include EPS, PS, PDF,
JPEG, and PNG. GLE is licensed under the BSD license. QGLE, the GLE user interface, is licensed
under the GPL license.

Trademark Acknowledgements

The following trademarks are used in this manual.
Windows Microsoft Corporation.
TEX Donald E. Knuth, A Typesetting System.
LATEX Leslie Lamport, A Document Preparation System.
PostScript Page Description Language, Adobe Systems Inc.

Typographic Conventions

The following conventions will be used in command descriptions:
[option] Specifies an optional keyword or parameter, the brackets should

not be typed.
option1 | option2 Pick one of the options listed.
keyword Keywords are represented in a bold typewriter font.
exp,x,y,x1,y1 Represent numbers or expressions. E.g. 2.2 or 2*5. Parameters

to be entered by the user are given in italics.

Pathways

For those in a hurry:

1. Read Chapter 2, The GLE Tutorial (beginners only).

2. Examine the examples at http://glx.sourceforge.io/examples/.

3. Browse through Chapter 4, The Graph Module.

For those with time:

• Chapter 2, GLE Tutorial:
Covers installation and drawing a simple graph, highly recommended if you have never used GLE
before.

• Chapter 3, GLE Primitives:
Describes the commands used for creating diagrams and slides and for annotating graphs.

v

http://glx.sourceforge.io/examples/

1

• Chapter 4, The Graph Module:
Describes the commands for drawing graphs.

• Chapter 5, The Key Module:
Describes the commands for producing keys for graphs.

• Chapter 7, Advanced Features of GLE:
Covers advanced features of GLE. This includes programming constructs, the LATEX interface, . . .

• Chapter 9, Surface and Contour Plots:
Describes the commands for drawing three-dimensional graphs.

• Chapter 10, GLE Utilities:
Describes FITLS and MANIP.

2 CHAPTER 1. PREFACE

Chapter 2

Tutorial

2.1 Installing GLE

This tutorial assumes that GLE is correctly installed. Information about how to install GLE can be
found at the following URLs. The GLE distribution also includes a README with brief installation
instructions.

• Installation on Windows: http://glx.sourceforge.io/tut/windows.html.

• Installation on Linux: http://glx.sourceforge.io/tut/linux.html.

• Installation on Mac OS/X: http://glx.sourceforge.io/tut/mac.html.

Feel free to post any questions or comments you might have about installing GLE on the GLE mailing
list, which is available here:

• Mailing list: https://lists.sourceforge.net/lists/listinfo/glx-general.

2.2 Running GLE

GLE is essentially a command line application; this tutorial will show you how to run it from the command
prompt. GLE can also be run from your favorite text editor or from QGLE, GLE’s graphical user interface.
More information about running GLE from a text editor is given in the installation instructions.
On Windows, you run GLE from the Windows Command Prompt. Normally the GLE installer should
have added an entry labeled “Command Prompt” to GLE’s folder in the start menu. On Unix-like
operating systems, GLE runs from an X-terminal, such as “konsole” on Linux / KDE.
Once you have opened the command prompt or terminal, try running GLE by entering the following
command.

gle

As a result, GLE displays the following message.

GLE version x.y.z

Usage: gle [options] filename.gle

More information: gle -help

If this message does not appear and you see an error message instead, then GLE is not correctly installed.
Refer to the installation instructions (Appendix ??) for more information. In the following, we will show
how to construct a simple drawing with GLE.

2.3 Drawing a Line on a Page

Let’s start with drawing a line on the page. GLE needs to know the size of the drawing you wish to
make. This is accomplished with the size command:

3

http://glx.sourceforge.io/tut/windows.html
http://glx.sourceforge.io/tut/linux.html
http://glx.sourceforge.io/tut/mac.html
https://lists.sourceforge.net/lists/listinfo/glx-general

4 CHAPTER 2. TUTORIAL

(1,
√
2)

Figure 2.1: Result of your first GLE script.

size 8 2

This specifies that the output will be 8cm wide and 2cm high. Next we define a “current point” by
moving to somewhere on the page:

amove 0.25 0.25

The origin (0,0) is at the bottom left hand corner of the page. Suppose we wish to draw a line from this
point 5 cm across and 1 cm up:

size 8 2

amove 0.25 0.25

rline 5 1

This is a relative movement as the x and y values are given as distances from the current point, alter-
natively we could have used absolute coordinates:

size 8 2

amove 0.25 0.25

aline 5.25 1.25

To draw some text on the page at the current point, use the write command:

write "Hi there"

Or, alternatively, you could include arbitrary LATEX expressions using the tex command:

tex "$(1,\sqrt{2})$"

Now we have constructed complete GLE script, which looks as follows:

size 8 2 box

amove 0.25 0.25

rline 5 1

tex "$(1,\sqrt{2})$"

Enter the above GLE script using a text editor and save it to disk (any editor that saves in UTF8 or ASCII
format will work). The following assumes that you have saved the file under the name “test.gle” in the
folder C:\GLE on Windows, or /home/john/gle on a Unix-like operating system. Now open a command
prompt and go to the folder where you saved the file. Then, run GLE on the file.
On Windows, you do this as follows (C:\> is the prompt):

C:\> cd C:\GLE

C:\GLE> gle test.gle

Or on Unix:

cd ~/gle

gle test.gle

GLE produces by default an Encapsulated PostScript (.eps) file:

GLE x.y.z [test.gle]-C-R-[test.eps]

Try viewing the resulting “test.eps” with a PostScript viewer such as GhostView, and compare it to
the output shown in Fig. 2.1. You can also preview it with QGLE, GLE’s graphical user interface. After
you’ve started QGLE, enter the following command at the command prompt.

2.4. DRAWING A SIMPLE GRAPH 5

gle -p test.gle

This will preview the output in the QGLE previewer window. GLE can also create PDF files. This is
accomplished by setting the output device to “pdf”.

gle -device pdf test.gle

Try viewing the resulting “test.pdf” with Acrobat Reader or similar. Other output formats supported
by GLE (eps, ps, pdf, svg, jpg, png, x11) can also be obtained with the -device command line option
(which can be abbreviated to -d). For example, to create a JPEG bitmap file, one can use:

gle -d jpg -r 200 test.gle

Help about the available command line options can be obtained with:

gle -help

and to obtain more information about a particular option, use:

gle -help option

The following command line options are supported by GLE:

-help Shows help about command line options

-info Outputs software version, build date, GLE_TOP, GLE_BIN, etc.

-verbosity Sets the verbosity level of GLE console output

-device Selects output device(s)

-cairo Use cairo output device

-resolution Sets the resolution for bitmap and PDF output

-fullpage Selects full page output

-landscape Selects full page landscape output

-output Specifies the name of the output file

-nosave Don’t write output file to disk (dry-run)

-preview Previews the output with QGLE

-gs Previews the output with GhostScript

-version Selects a GLE version to run

-compatibility Selects a GLE compatibility mode

-calc Runs GLE in "calculator" mode

-catcsv Pretty print a CSV file to standard output

-tex Indicates that the script includes LaTeX expressions

-inc Creates an .inc file with LaTeX code

-texincprefix Adds the given subdirectory to the path in the .inc file

-mkinittex Creates "inittex.ini" from "init.tex"

-finddeps Automatically finds dependencies

-nocolor Forces grayscale output

-transparent Creates transparent output (with -d png)

-noctrl-d Excludes CTRL-D from the PostScript output

-nomaxpath Disables the upper-bound on the drawing path complexity

-noligatures Disable the use of ligatures for ’fl’ and ’fi’

-gsoptions Specify additional options for GhostScript

-safemode Disables reading/writing to the file system

-allowread Allows reading from the given path

-allowwrite Allows writing to the given path

-keep Don’t delete temporary files

2.4 Drawing a Simple Graph

This section shows how to go about drawing a simple graph. Enter the following data in a new file and
save it as “test.csv”. Note that you can export files in CSV (comma separated values) format with most
spread sheet programs.

1,2

2,6

3,2

4,5

5,9

6 CHAPTER 2. TUTORIAL

The data is in two columns with a comma separating each column of numbers. The following commands
will draw a simple line graph of the data.

size 7 4

begin graph

title "Simple Graph"

xtitle "Time"

ytitle "Output"

data "test.csv"

d1 line marker triangle color red

end graph
0

2

4

6

8

10

O
u
tp
u
t

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time

Simple Graph

The commands title, xtitle, and ytitle specify the graph title and the axis titles. The command data loads
the data file and the d1 command specifies how the first curve on the graph should look like. These
commands are discussed in detail in Chapter 4. Possible values for the marker option can be found on
the GLE wall reference chart in Appendix A.8.
The axis ranges can be specified with “xaxis min v0 max v1” and “yaxis min v0 max v1”. A smooth line can
be drawn through the data points by changing the d1 command to: “d1 line smooth” as in the following
example.

size 7 4

begin graph

title "Smooth Graph"

xtitle "Time"

ytitle "Output"

data "test.csv"

yaxis min 0 max 10

d1 line smooth color red

end graph

0

2

4

6

8

10
O
u
tp
u
t

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time

Smooth Graph

Note that the order of the commands is not important, except that circle is a parameter for the option
marker and therefore must come right after it. The same holds for line and smooth and color and blue in
the example “d1 marker circle line smooth color blue”.
It is simple to change to a bar graph and include last year’s measurements:

size 7 4

begin graph

title "Bar Graph"

xtitle "Measurement"

ytitle "Output"

data "year-2000.csv"

data "year-2001.csv"

key pos tl

bar d1,d2 fill red,blue

end graph

0

2

4

6

8

10

O
u
tp
u
t

1 2 3 4 5

Measurement

Bar Graph

Year 2000
Year 2001

Adding min and max values on the axis commands is highly recommended because by default GLE won’t
start from the origin unless the data happens to be very close to zero. It is also difficult to compare
graphs unless they all have the same axis ranges. More information about the graph module is available
in Chapter 4.

Chapter 3

Primitives

A GLE command is a sequence of keywords and values separated by white space (one or more spaces
or tabs). Each command must begin on a new line. Keywords may not be abbreviated, the case is not
significant. All coordinates are expressed in centimeters from the bottom left corner of the page.
GLE uses the concept of a current point which most commands use. For example, the command aline
2 3 will draw a line from the current point to the coordinates (2,3).
The current graphics state also includes other settings like line width, colour, font, 2d transformation
matrix. All of these can be set with various GLE commands.

3.1 Graphics Primitives (a summary)

! comment
@xxx
abound x y
aline x y [arrow start] [arrow end] [arrow both] [curve α1 α2 d1 d2]
amove x y
arc radius a1 a2 [arrow end] [arrow start] [arrow both]
arcto x1 y1 x2 y2 rad
begin box [fill pattern] [add gap] [nobox] [name xyz] [round val]
begin clip
begin length var
begin name name
begin object name
begin origin
begin path [stroke] [fill pattern] [clip]
begin rotate angle
begin scale x y
begin table
begin tex
begin text [width exp]
begin translate x y
bezier x1 y1 x2 y2 x3 y3
bitmap filename width height [type type]
bitmap info filename width height [type type]
box x y [justify jtype] [fill color] [name xxx] [nobox] [round val]
circle radius [fill pattern]
closepath
colormap fct xmin xmax ymin ymax pixels-x pixels-y width height [color] [palette pal]
curve ix iy [x1 y1 x y x y ... xn yn]ex ey
define marker markername subroutine-name
defmarker markername fontname scale dx dy
draw name.point [arg1 ... argn] [name name]
ellipse dx dy [options]
elliptical arc dx dy theta1 theta2 [options]

7

8 CHAPTER 3. PRIMITIVES

elliptical narc dx dy theta1 theta2 [options]
for var = exp1 to exp2 [step exp3] command [...] next var
grestore
gsave
if exp then command [...] else command [...] end if
include filename
join object1.just sep object2.just [curve α1 α2 d1 d2]
local var1, . . ., varn
margins top bottom left right
marker marker-name [scale-factor]
narc radius a1 a2 [arrow end] [arrow start] [arrow both]
orientation o
papersize size
postscript filename.eps width-exp height-exp
print string$. . .
psbbtweak
pscomment exp
rbezier x1 y1 x2 y2 x3 y3
return exp
reverse
rline x y [arrow end] [arrow start] [arrow both] [curve α1 α2 d1 d2]
rmove x y
save objectname
set alabeldist d
set alabelscale s
set arrowangle angle
set arrowsize size
set arrowstyle simple | filled | empty
set atitledist s
set atitlescale s
set background c
set cap butt | round | square
set color col
set dashlen dashlen-exp
set fill fill-color/pattern
set font font-name
set fontlwidth line-width
set hei character-size
set join mitre | round | bevel
set just left | center | right | tl | etc...
set lstyle line-style
set lwidth line-width
set pattern fill-pattern
set texscale scale | fixed | none
set titlescale s
set ticksscale s
size w h
sub sub-name parameter1 parameter2 etc...
swap a b
tex string [name xxx] [add val]
text unquoted-text-string
write string$. . .

3.2 Graphics Primitives (in detail)

! comment
Indicates the start of a comment. GLE ignores everything from the exclamation point to the end
of the line. This works both in GLE scripts and in data files used in, e.g., graph blocks.

3.2. GRAPHICS PRIMITIVES (IN DETAIL) 9

@xxx
Executes subroutine xxx.

abound x y
Update the current bounding box to include the point (x, y) without drawing anything. This
command is useful in combination with ‘begin box’, ‘begin name’, etc., e.g., to add empty space to
the box.

aline x y [arrow start] [arrow end] [arrow both] [curve α1 α2 d1 d2]
Draws a line from the current point to the absolute coordinates (x,y), which then becomes the new
current point. The arrow qualifiers are optional, they draw arrows at the start or end of the line,
the size of the arrow is proportional to the current font height.

If the curve option is given, then a Bezier curve is drawn instead of a line. The first control point
is located at a distance d1 and angle α1 from the current point and the second control point is
located at distance d2 and angle α2 from (x,y).

amove x y
Changes the current point to the absolute coordinates (x,y).

arc radius a1 a2 [arrow end] [arrow start] [arrow both]
Draws an arc of a circle in the anti-clockwise direction, centered at the current point, of radius
radius, starting at angle a1 and finishing at angle a2. Angles are specified in degrees. Zero degrees
is at three o’clock and Ninety degrees is at twelve o’clock.

arc 1.2 20 45

The command narc is identical but draws the arc in the clockwise direction. This is important when
constructing a path.

amove 0.5 0.5

rline 1 0.5 arrow end

set lwidth 0.1

arc 1 10 160

arc 0.5 -90 0

arcto x1 y1 x2 y2 rad
Draws a line from the current point to (x1,y1) then to (x2,y2) but fits an arc of radius rad joining
the two vectors instead of a vertex at the point (x1,y1).

amove 1.5 .5

rline 1 0

set lwidth .1

arcto 2 0 -1 1 .5

set lwidth 0

rline -1 1

begin block name ... end block name
There are several block structured commands in GLE. Each begin must have a matching end.
Blocks which change the current graphics state (e.g. scale, rotate, clip etc) will restore whatever
they change at the end of the block. Indentation is optional but should be used to make the GLE
program easier to read.

begin box [fill pattern] [add gap] [nobox] [name xyz] [round val]
Draws a box around everything between begin box and end box. The option add adds a margin
of margin cm to each side of the box to make the box slightly larger than the area defined by the
graphics primitives in the begin box . . . end box group (to leave a gap around text for example).
The option nobox stops the box outline from being drawn.

The name option saves the coordinates of the box for later use with among others the join command.

10 CHAPTER 3. PRIMITIVES

Length = 30.06 cm

begin length len
amove 0.8 1.4
curve 20 0 0 2 10 0 0 -2 -10 0 0 9

end length
write “Length = ”+format$(len, ”fix 2”)+“ cm”

Figure 3.1: Compute the total length of a shape.

If the round option is used, a box with rounded corners will be drawn.

begin box add 0.2

begin box fill gray10 add 0.2 round .3

text John

end box

end box

begin clip
This saves the current clipping region. A clipping region is an arbitrary path made from lines and
curves which defines the area on which drawing can occur. This is used to undo the effect of a
clipping region defined with the begin path command. See the example CLIP.GLE in appendix B
at the end of the manual.

begin length var
This block computes the total length of all the elements that are included in it and saves the result
in the variable “var”. See Fig. 3.1 for an example.

begin name name
Saves the coordinates of what is inside the block for later use with among others the join command.
This command is equivalent to ‘begin box name . . . nobox’.

begin object name [arg1, . . . , argn]
Declares a new object (sub-figure) that can be drawn later with the ‘draw’ command. Section 7.1.2
explains in detail how this command works and how it can be used.

Object blocks can have arguments if they are not defined inside a subroutine. Such object blocks
are called ‘static objects’; they behave similar to subroutines. Object blocks can also be defined
inside a subroutine. In that case, they are called ‘dynamic objects’ and cannot have arguments.
They may, however, refer to all arguments and local variables of the surrounding subroutine.

begin origin
This makes the current point the origin. This is good for subroutines or something which has been
drawn using amove,aline. Everything between the begin origin and end origin can be moved as one
unit. The current point is also saved and restored.

begin path [stroke] [fill pattern] [clip]
Initialises the drawing of a filled shape. All the lines and curves generated until the next end path
command will be stored and then used to draw the shape. stroke draws the outline of the shape,
fill paints the inside of the shape in the given colour and clip defines the shape as a clipping region
for all future drawing. Clipping and filling will only work on PostScript devices.

begin rotate angle
The coordinate system is rotated anti-clockwise about the current point by the angle angle (in
degrees). For example, to draw a line of text running vertically up the page (as a Y axis label, say),
type:

3.2. GRAPHICS PRIMITIVES (IN DETAIL) 11

begin rotate 90

text This is

end rotate

begin scale x y
Everything between the begin and end is scaled by the factors x and y. E.g., scale 2 3 would make
the picture twice as wide and three times higher.

begin scale 3 1

begin rotate 30

text This is

end rotate

end scale

begin table
This module is an alternative to the TEXT module. It reads the spaces and tabs in the source file
and aligns the words accordingly. A single space between two words is treated as a real space, not
an alignment space.

With a proportionally spaced font columns will line up on the left hand side but not on the right
hand side. However with a fixed pitch font, like tt, everything will line up.

begin table

Here is my table

of text see how

22 44 55 33

0.1 999 1 .2

3 33 2 33

it lines up

end table

begin text [width exp]
This module displays multiple lines/paragraphs of text. The block of text is justified according to
the current justify setting. See the set just command for a description of justification settings.

If a width is specified the text is wrapped and justified to the given width. If a width is not given,
each line of text is drawn as it appears in the file. Remember that GLE treats text in the same way
that LATEX does, so multiple spaces are ignored and some characters have special meaning. E.g,
\ ^ _ & { }

To include Greek characters in the middle of text use a backslash followed by the name of the
character. E.g., 3.3\Omega S would produce “3.3ΩS”.

To put a space between the Omega and the S add a backslash space at the end. E.g., 3.3\Omega\ S

produces “3.3Ω S”

Sometimes the space control characters (e.g. \:) are also ignored, this may happen at the beginning
of a line of text. In this case use the control sequence \glass which will trick GLE into thinking it
isn’t at the beginning of a line. E.g.,

text \glass \:\: Indented text

12 CHAPTER 3. PRIMITIVES

set hei 0.25 just tl font tt

begin text width 5

This is my paragraph of text to see

if it wraps things at four cm as I have

told it to do.

end text

...

begin text

Now some text

without a width

specified

end text

There are several LATEX like commands which can be used within text. The complete list can be
found in Appendix A.3. A few examples are:

\ \’ \v \u \= \^ \. \H \~ \’’ Implemented TeX accents

^{} _{} Superscript, subscript

\\ _ Forced Newline, underscore character

\, \: \; 0.5em, 1em, 2em space (em = width of the letter ‘m’)

\tex{expression} Any LaTeX expression

\char{22} Any character in current font

\glass Makes move/space work on beginning of line

\rule{2}{4} Draws a filled in box, 2cm by 4cm

\setfont{rmb} Sets the current text font

\sethei{0.3} Sets the font height (in cm)

\setstretch{2} Scales the quantity of glue between words

\lineskip{0.1} Sets the default distance between lines of text

\linegap{-1} Sets the minimum required gap between lines

{\rm ...}, {\it ...} Sets roman, and italic font

{\bf ...}, {\tt ...} Sets bold, and typewriter (monospaced) font

\alpha, \beta, ... Greek symbols

begin tex [width exp]
This module displays multiple lines/paragraphs of text similar to begin text but it is rendered using
LATEX.

begin translate x y
Everything between the begin and end is moved x units to the right and y units up.

bezier x1 y1 x2 y2 x3 y3
Draws a Bézier cubic section from the current point to the point (x3,y3) with Bézier cubic control
points at the coordinates (x1,y1) and (x2,y2). For a full explanation of Bézier curves see the
PostScript Language Reference Manual.

bitmap filename width height [type type]
Imports the bitmap filename. The bitmap is scaled to width×height. If one of these is zero, it is
computed based on the other one and the aspect ratio of the bitmap. GLE supports TIFF, JPEG,
PNG and GIF bitmaps (depending on the compilation options).

Bitmaps are compressed automatically by GLE using either the LZW or the JPEG compression
scheme.

bitmap info filename width height [type type]
Returns the dimensions in pixels of the bitmap in the output parameters width and height.

box x y [justify jtype] [fill color] [name xxx] [nobox] [round val]
Draws a box, of width x and height y, with its bottom left corner at the current point. If the justify
option is used, the box will be positioned relative to the specified point. E.g., TL = top left, CC
= center center, BL = bottom left, CENTER = bottom center, RIGHT = bottom right, LEFT =
bottom left. See set just for a description of justification settings.

If a fill pattern is specified, the box will be filled. Remember that white fill is different from no fill
pattern - white fill will erase anything that was inside the box.

If the round option is used, a box with rounded corners will be drawn.

3.2. GRAPHICS PRIMITIVES (IN DETAIL) 13

circle radius [fill pattern]
Draws a circle at the current point, with radius radius. If a fill pattern is specified the circle will
be filled.

closepath
Joins the beginning of a line to the end of a line. I.e., it does an aline to the end of the last amove.

colormap fct xmin xmax ymin ymax pixels-x pixels-y width height [color] [palette pal]
Draws a colormap of the function fct(x, y), in which x ranges from xmin to xmax, and y ranges
from ymin to ymax. The size of the colormap is width by height centimeter and the resolution is
pixels-x by pixels-y pixels. A colormap is grayscale by default; it is drawn in color if the option
color is given. In the latter case, it is possible to specify a palette subroutine pal mapping the range
0 . . . 1 to a range of colors. This command is similar to the colormap command in a graph block
(Sec. 9.5).

curve ix iy [x1 y1 x y x y ... xn yn]ex ey
Draws a curve starting at the current point and passing through the points (x1,y1) . . . (xn,yn),
with an initial slope of (ix,iy) to (x1,y1) and a final slope of (ex,ey). All the vectors are relative
movements from the vector before.

amove 1 1

curve 1 0 0 1 1 0 0 -1 1 0

amove 3.6 1

curve 0 1 0 1 1 0 0 -1 0 -1

define marker markername subroutine-name
This defines a new marker called markername which will call the subroutine subroutine-name when-
ever it is used. It passes two parameters, the first is the requested size of the marker and the second
is a value from a secondary dataset which can be used to vary size or rotation of a marker for each
point plotted.

To define a character from the postscript ZapDingbats font as a marker you would use, e.g.

sub subnamex size mdata

gsave ! save font and x,y

set just left font pszd hei size

t$ = "\char{102}"

rmove -twidth(t$)/2 -theight(t$)/2 ! centers marker

write t$

grestore ! restores font and x,y

end sub

The second parameter can be supplied using the mdata command when drawing a graph, this gives
the marker subroutine a value from another dataset to use to draw the marker. For example the
marker could vary in size, or angle, with every one plotted.

d3 marker myname mdata d4

defmarker markername fontname scale dx dy
This command defines a new marker, from any font, it is automatically centered but can be adjusted
using dx,dy. e.g.

defmarker hand pszd 43 1 0 0

draw name.point [arg1 ... argn] [name name]
Draws a named object block that has been previously defined using a “begin/end object” (p. 10)
construct. The object is drawn such that the point indicated by the first argument of the draw
command appears at the current position. The point can be any (hierarchically) named point on
the object and may include the justify options defined for the join command (p. 15).

14 CHAPTER 3. PRIMITIVES

If the object block has parameters (similar to a subroutine) then these parameters can be given as
arg1 . . . argn.

The “draw” command names the object using the same name as the name of the object block by
default. An alternative name can be supplied using its “name” option.

See Sec. 7.1.2 for a detailed explanation of this command with examples.

ellipse dx dy [options]
This command draws an ellipse with the diameters dx and dy in the x and y directions, respectively.
The options are the same as the circle command.

elliptical arc dx dy theta1 theta2 [options]
This command is similar to the arc command except that it draws an elliptical arc in the clockwise
direction with the diameters dx and dy in the x and y directions, respectively. theta1 and theta2
are the start and stop angle, respectively. The options are the same as for the arc command.

The command elliptical narc is identical but draws the arc in the clockwise direction. This is
important when constructing a path.

for var = exp1 to exp2 [step exp3] command [...] next var
The for ... next structure lets you repeat a block of statements a number of times.

GLE sets var equal to exp1 and then repeats the following steps.

• If var is greater than exp2 then GLE commands are skipped until the line after the next
statement.

• The value exp3 is added to var.

• The statements between the for and next statement are executed.

If exp1 is greater than exp2 then the loop is not executed.

for x = 1 to 4 step 0.5

amove x 1

aline 5-x 2

next x

grestore
Restores the most recently saved graphics state. This is the simplest way to restore complicated
transformations such as rotations and translations. It must be paired with a previous gsave com-
mand.

gsave
Saves the current graphics transformation matrix and the current point and the current colour, font
etc.

if expression then command [...] else command [...] end if
If expression evaluates to true, then execution continues with the statements up to the corresponding
else, otherwise the statements following the else and up to the corresponding end if are executed.

amove 3 3

if xpos()=3 then

text We are at x=3

else

text We are elsewhere

end if

Note: end if is not spelt endif.

3.2. GRAPHICS PRIMITIVES (IN DETAIL) 15

Table 3.1: Include files distributed with GLE.
barstyles.gle Defines additional styles for bar plots.
color.gle Defines functions for working with colors.
colors-gle-4.0.12.gle Redefines all colors defined in GLE 4.0.12 and before.
contour.gle Subroutines for drawing contour plots
electronics.gle Subroutines for drawing electrical circuits
ellipse.gle Draw text in an ellipse
feyn.gle Subroutines for drawing Feynmann diagrams
graphutil.gle Subroutines for drawing graphs
piesub.gle Pie chart routines
polarplot.gle Polar plotting routines
shape.gle Drawing various shapes
simpletree.gle Draw simple trees
stm.gle Add labels to images
ziptext.gle Draw zipped text

include filename
Includes the GLE script “filename” into the current script. This is useful for including library scripts
with subroutines. GLE searches a number of predefined directories for include files. By default,
this includes the current directory and the “lib” or “gleinc” subdirectory of the root directory
(GLE TOP) of your GLE installation. The latter includes a number of subroutine files that are
distributed with GLE (Table 3.1). Additional include directories can be defined by means of the
environment variable GLE USRLIB.

join object1.just sep object2.just [curve α1 α2 d1 d2]
Draws a line between two named objects. An object is simply a point or a box which was given a
name when it was drawn.

The justify qualifiers are the standard GLE justification abbreviations: .br (bottom right), .bl
(bottom left), .bc (bottom centre), .tr (top right), .tc (top centre), .tl (top left), .cr (centre
right), .cc (centre centre), and .cl (centre left). In addition, .v and .h can be used to draw
vertical or horizontal lines connecting to the object, .c for drawing a line connecting to e circle or
ellipse, and .box for drawing a line to a rectangle. Fig. 3.4 shows examples of the different cases.

If sep is written as -, a line is drawn between the named objects e.g.

join fred.tr - mary.tl

Arrow heads can be included at both ends of the line by writing sep as <->. Single arrow heads
are produced by <- and ->. Note that sep must be separated from object1.just and object2.just by
white space.

If the justification qualifiers are omitted, a line will be drawn between the centers of the two objects
(clipped at the edges of the rectangles which define the objects). This is the same as using the .box
qualifier on both objects.

The curve option is explained with the aline command. Fig. 3.4 shows an example where the “join”
command is used with the curve option.

Sec. 7.1.1 contains several examples of joining objects.

local var1, . . ., varn
Defines a local variable inside a subroutine. It is possible to initialize the variable to a particular
value with, e.g., ‘local x = 3’, which defines the local variable ‘x’ and assigns it the value 3. You
can also define several local variables at once, e.g., ‘local x, y’ defines the local variables ‘x’ and
‘y’.

margins top bottom left right
This command can be used to define the page margins. Margins are only relevant for making
full-page figures (using the -fullpage command line option). See also the “papersize” command.

marker marker-name [scale-factor]
Draws marker marker-name at the current point. The size of the marker is proportional to the

16 CHAPTER 3. PRIMITIVES

triangle

wtriangle

ftriangle

square

wsquare

fsquare

circle

wcircle

fcircle

diamond

wdiamond

fdiamond

cross

plus

minus

asterisk

odot

ominus

oplus

otimes

star

star2

star3

star4

flower

club

heart

spade

dag

ddag

snake

dot

handpen

letter

phone

plane

scircle

ssquare

trianglez

diamondz

Figure 3.2: All markers supported by GLE. (The names that start with “w” are white filled.)

current font size, scaled by the value of scale-factor if present. Markers are referred to by name, eg.
square, diamond, triangle and fcircle. Markers beginning with the letter f are usually filled variants.
Markers beginning with w are filled with white so lines are not visible through the marker. For a
complete list of markers refer to Fig. 3.2.

set just lc

amove 0.5 2.5

marker diamond 1

rmove 0.6 0; text Diamond

amove 0.5 2

marker triangle 1

rmove 0.6 0; text Triangle

...

orientation o
Sets the orientation of the output in full-page mode. Possible values are “portrait” and “landscape”.
Fig. 3.3 illustrates these two cases.

papersize size

papersize width height
Sets the paper size of the output. This is used only when GLE is run with the option “-fullpage” or
when the PostScript output device is used (i.e., “-d ps”). The command either takes one argument,
which should be one of the predefined paper size names or two numbers, which give the width
and height of the output measured in cm. The following paper sizes are known by GLE: a0paper,
a1paper, a2paper, a3paper, a4paper, and letterpaper.

If a “size” command is given in the script, then the output is drawn centered on the page. If no size
command is included in the script, then the output will appear relative to the bottom-left corner of
the page, offset by the page margins (see “margins” command). Fig. 3.3 illustrates these two cases.

The paper size can also be set in GLE’s configuration file (Sec. 7.5).

postscript filename.eps width-exp height-exp
Includes an encapsulated postscript file into a GLE picture, the postscript picture will be scaled up
or down to fit the width given. On the screen you will just see a rectangle.

Only the width-exp is used to scale the picture so that the aspect ratio is maintained. The height
is only used to display a rectangle of the right size on the screen.

print string$. . .
This command prints its argument to the console (terminal).

psbbtweak
Changes the default behavior of the bounding box. The default behavior is to have the lower corner
at (-1,-1), which for some interpreters (i.e., Photoshop) will leave a black line around the bottom
and left borders. If this command is specified then the origin of the bounding box will be set to
(0,0).

3.2. GRAPHICS PRIMITIVES (IN DETAIL) 17

21 cm

2
9.
7
cm

10 cm

1
0
cm

21 cm

2
9.
7
cm

10 cm

10
cm

21 cm

2
9.
7
cm

21 cm

2
9
.7

cm

papersize a4paper
size 10 10

papersize a4paper
orientation landscape
size 10 10

papersize a4paper
margins 2 2 2 2

papersize a4paper
orientation landscape
margins 2 2 2 2

Figure 3.3: Result of different combinations of the commands “papersize”, “margins”, “size”, and “ori-
entation” for fullpage graphics (gle -fullpage figure.gle).

GLE

test.gle

join b1.rc -> b2.tc curve 0 90 1.2 1

c

a

b

join a.c -> b.c

join b1.rc -> b2.h

a

b

join a.c -> b.box

Figure 3.4: Different ways of joining objects.

This command must appear before the first size command in the GLE file.

pscomment exp
Allows inclusion of exp as a comment in the preamble of the postscript file. Multiple pscomment
commands are allowed.

This command must appear before the first size command in the GLE file.

rbezier x1 y1 x2 y2 x3 y3
This command is identical to the BEZIER command except that the points are all relative to the
current point.

amove 0.5 2.8

rbezier 1 1 2 -1 3 1

amove 0.2 0.2

rbezier 1 1 2 1.2 1.8 0

return exp
The return command is used inside subroutines to return a value.

reverse
Reverses the direction of the current path. This is used when filling multiple paths in order that
the Non-Zero Winding Rule will know which part of the path is ‘inside’.

18 CHAPTER 3. PRIMITIVES

With the Non-Zero Winding Rule an imaginary line is drawn through the object. Every time a
line of the object crosses it from left to right, one is added to the counter; every time a line of the
object crosses it from right to left, one is subtracted from the counter. Everywhere the counter is
non-zero is considered to be the ‘inside’ of the drawing and is filled.

rline x y [arrow end] [arrow start] [arrow both] [curve α1 α2 d1 d2]
Draws a line from the current point to the relative coordinates (x,y), which then become the new
current point. If the current point is (5,5) then rline 3 -2 is equivalent to aline 8 3. The optional
qualifiers on the end of the command will draw arrows at one or both ends of the line, the size of
the arrow head is proportional to the current font size.

The curve option is explained with the aline command.

rmove x y
Changes the current point to the relative coordinate (x,y). If the current point is (5,5) then rmove
3 -2 is equivalent to amove 8 3.

save objectname
This command saves a point for later use with the join command.

set alabeldist d
The spacing between the graph axis labels and the axis is set to d.

set alabelscale s
The graph axis label font size is set to ‘alabelscale’ times ‘hei’.

set arrowangle angle
Sets the opening angle of the arrow tips. (Actually, half of the opening angle.)

set arrowsize size
Sets the length of the arrow tips in centimeter.

set arrowstyle simple | filled | empty
Sets the style of the arrow tips. There are three pre-defined styles: simple, filled, and empty (See
Fig. 3.5).

It is also possible to create user-defined arrow tip styles. To do so, create a subroutine ‘arrow xxxx
langle aangle asize’, with xxxx the name of the new style. The parameter langle is the angle of the
line on which the arrow tip is to be drawn and the parameters aangle and asize are the current
values of the settings arrowangle and arrowsize. The user-defined style can be enabled, in the same
way as the built-in ones, with ‘set arrowstyle xxxx’. Fig. 3.5 shows the three predefined styles and a
user-defined tip style that is defined by the following subroutine:

sub arrow_circle langle aangle asize

circle 0.1 fill red

end sub

More complex examples of user-defined arrow styles can be found in the GLE example repository.

set atitledist s
The spacing between the graph axis title and the axis labels is set to d.

set atitlescale s
The graph axis title font size is set to ‘atitlescale’ times ‘hei’.

3.2. GRAPHICS PRIMITIVES (IN DETAIL) 19

Figure 3.5: Different arrow tip styles.

set color black

set color white

set color gray50

set color 0.3

set color red

set color #ADFF2F

set color rgb255(255,140,0)

set color rgb(0.5,0.2,0.2)

Figure 3.6: Examples of setting the drawing color.

set background c
Set the background color for a pattern fill to c. (See ‘set fill’.) Note that “set background” must
come after “set fill” because “set fill” resets the background color to the specified color.

set cap butt | round | square
Defines what happens at the end of a wide line.

set color col
Sets the current colour for all future drawing operations. GLE supports all SVG/X11 standard
color names. These are listed in Appendix A.7, and include the following: black, white, red, green,
blue, cyan, magenta, yellow, gray10, gray20, . . ., gray90. It is also possible to specify a gray scale as
a real number with 0.0 = black and 1.0 = white. Colors can also be set using the HTML notation,
e.g., #FF0000 = red. Finally, the functions rgb(red,green,blue) and rgb255(red,green,blue) may be
used to create custom colors. Fig. 3.6 gives some examples.

mm$ = "blue"

amove 0.5 0.5

for c = 0 to 1 step 0.05

box 0.2 2 fill (c) nobox

rmove 0.2 0

next c

amove 2 1

box 2 1 fill white nobox

rmove -0.2 0.2

box 2 1 fill mm$

set dashlen dashlen-exp
Sets the length of the smallest dash used for the line styles. This command MUST come before the
set lstyle command. This may be needed when scaling a drawing by a large factor.

set fill fill-color/pattern
Sets the color or pattern for filling shapes. This command works in combination with shapes such
as circles, ellipses, and boxes. If the argument is a color, then shapes are filled with the given color
(see “set color”). If it is a pattern, then the shapes are painted with the given pattern in black ink.
Fig. 3.7 lists a number of pre-defined patterns. To paint a shape in a color different from black,
first set the color, then the pattern. That is,

20 CHAPTER 3. PRIMITIVES

GRID GRID1 GRID2 GRID3 GRID4 GRID5

SHADE SHADE1 SHADE2 SHADE3 SHADE4 SHADE5

RSHADE RSHADE1 RSHADE2 RSHADE3 RSHADE4 RSHADE5

Figure 3.7: Patterns for painting shapes.

set fill red

set pattern shade

set background yellow

box 2 2

will draw a box and paint is using the shade pattern and red ink on a yellow background. To draw
shapes that are not filled, use the command “set fill clear”. That is,

set fill clear

box 2 2

will draw an empty box.

set font font-name
Sets the current font to font-name. Valid font-names are listed in Appendix A.2.

There are three types of font: PostScript, LATEX and Plotter. They will all work on any device,
however LATEX fonts are drawn in outline on a plotter, and so may not look very nice. PostScript
fonts will be emulated by LATEX fonts on non-PostScript printers.

set fontlwidth line-width
This sets the width of lines to be used to draw the stroked (Plotter fonts) on a PostScript printer.
This has a great effect on their appearance.

set font pltr

amove .2 .2

text Tester

set fontlwidth .1

set cap round

rmove 0 1.5

text Tester

set hei character-size
Sets the height of text. For historical reasons, concerning lead type and printing conventions, a
height of 10cm actually results in capital letters about 6.5cm tall.

The default value of “hei” is 0.3633 (to mimic the default height of LATEX expressions).

set join mitre | round | bevel
Defines how two wide lines will be joined together. With mitre, the outside edges of the join are
extended to a point and then chopped off at a certain distance from the intersection of the two
lines. With round, a curve is drawn between the outside edges.

3.2. GRAPHICS PRIMITIVES (IN DETAIL) 21

set just left | center | right | tl | etc...
Sets the justification which will be used for text commands.

amove 0.5 3

set just left

box 1.5 0.6

text Justify left

rmove 2 0

set just bl

box 1.5 0.6

text Justify bl

set lstyle line-style
Sets the current line style to line style number line-style. There are 9 predefined line styles (1–9).
When a line style is given with more than one digit the first digit is read as a run length in black,
the second a run length in white, the third a run length in black, etc.

set just left

for z = 0 to 4

set lstyle z

rline 2 0

rmove 0.1 0

write z

rmove -2.1 -0.4

next z

set lwidth line-width
Sets the width of lines to line-width cm. A value of zero will result in the device default of about
0.02 cm, so a lwidth of .0001 gives a thinner line than an lwidth of 0.

set pattern fill-pattern
Specifies the filling pattern. A number of pre-defined patterns is listed in Fig. 3.7. See the description
of “set fill” for more information. Note that “set pattern” must come after “set fill” because “set
fill” resets the pattern to solid.

set texscale scale | fixed | none
This setting controls the scaling of LATEX expressions (Sec. 7.2): ‘scale’ scales them to the value of
‘hei’, ‘fixed’ scales them to the closest LATEX default size to ‘hei’, and ‘none’ does not scale them.
With ‘none’, the font size in your graphics will be exactly the same as in your main document.

set titlescale s
The graph title font size is set to ‘titlescale’ times ‘hei’.

set ticksscale s
The size of the graph axis ticks is set to ‘ticksscale’ times ‘hei’.

size w h
Sets the size of GLE’s output to w centimeter wide by h centimeter tall.

This command usually appears at the top of a GLE script. That is, only commands that do not
generate output can precede the ‘size’ command. For example, the ‘include’ command, subroutine
definitions, and assignments to variables can appear before the ‘size’ command. Commands like
‘aline’, on the other hand, should appear after the ‘size’ command.

It is possible to omit the size command. In that case, the size of the output is determined by the
‘pagesize’ command (see Fig. 3.3).

22 CHAPTER 3. PRIMITIVES

sub sub-name parameter1 parameter2 etc.
Defines a subroutine. The end of the subroutine is denoted with end sub. Subroutines must be
defined before they are used.

Subroutines can be called inside any GLE expression, and can also return values. The parameters
of a subroutine become local variables. Subroutines are re-entrant.

sub tree x y a$

amove x y

rline 0 1

write a$

return x/y

end sub

tree 2 4 "mytree" (Normal call to subroutine)

slope = tree(2,4,"mytree") (Using subroutine in an expression)

swap a b
Swaps the values of the variables a and b.

tex string [name xxx] [add val]
Draw a LATEX expression at the current point using the current value of ‘justify’. See Sec. 7.2 for
more information. Using the name option, the LATEX expression can be named, just like a box. The
size of the virtual named box can be increased with the add option.

text unquoted-text-string
This is the simplest command for drawing text. The current point is unmodified after the text is
drawn so following one text command with another will result in the second line of text being drawn
on top of the first. To generate multiple lines of text, use the begin text . . . end text construct.

text "Hi, how’s tricks", said Jack!

write string$. . .
This command is similar to text except that it expects a quoted string, string variable, or string
expression as a parameter. If write has more than one parameter, it will concatenate the values of
all the parameters.

a$ = "Hello there "

xx = sqrt(10)

t$ = time$()

c$ = a$+t$

write a$+t$ xx

The built in functions sqrt() and time$() are described in Appendix A.2.

Chapter 4

The Graph Module

A graph should start with begin graph and end with end graph. The data to be plotted are organised into
datasets. A dataset consists of a series of (X,Y) coordinates, and has a name based on the letter “d” and
a number between 1 and 1000, e.g. d1
The name dn can be used to define a default for all datasets. Many graph commands described below
start with dn. This would normally be replaced by a specific dataset number e.g.,

d3 marker diamond

For each xaxis command there is a corresponding yaxis, y2axis and x2axis command for setting the top left
and right hand axes. These commands are not explicitly mentioned in the following descriptions.

4.1 Graph Commands (a summary)

center
colormap fct pixels-x pixels-y [color] [invert] [zmin z1] [zmax z2] [palette pal]
data filename [d1 d2 d3 ...] [d1=c1,c3 ...] [ignore n] [comment char] [numrows n]
discontinuity threshold t
dn [deresolve m] [average] line
dn err d5 errwidth width-exp errup nn% errdown d4
dn herr d5 herrwidth width-exp herrleft nn% herrright d4
dn key ”Dataset title”
dn line [impulses] [steps] [fsteps] [hist] [bar]
dn lstyle line-style lwidth line-width color col
dn marker marker-name [color c] [msize marker-size] [mdata dn] [mdist dexp]
dn nomiss
dn smooth — smoothm
dn svg smooth [m]
dn xmin x-low xmax x-high ymin y-low ymax y-high
dn [x2axis] [y2axis]
dn file “all.dat,xc,yc” [marker mname] [line]
d[i] . . .
draw call
fullsize
hscale h
key pos tl nobox hei exp offset xexp yexp
let ds = exp [from low] [to high] [step exp] [where exp]
let ds = x-exp, y-exp [from low] [to high] [step exp] [where exp]
let dn = [routine] dm [options]
let ds = hist dm [from x1] [to x2] [bins n] [step n]
let ds = . . . [nsteps n]
let ds = . . . [range dn]
math
nobox
scale h v

23

24 CHAPTER 4. THE GRAPH MODULE

scale auto
size x y
title ”title” [hei ch-hei] [color col] [font font] [dist cm]
vscale v
x2labels on
xaxis — yaxis — x2axis — y2axis
xaxis angle α
xaxis base exp-cm
xaxis color col font font-name hei exp-cm lwidth exp-cm
xaxis dsubticks sub-distance
xaxis format format-string
xaxis grid
xaxis log
xaxis min low max high
xaxis nofirst nolast
xaxis nticks number dticks distance dsubticks distance
xaxis ftick x0 dticks distance
xaxis off
xaxis shift cm-exp
xaxis symticks
xlabels font font-name hei char-hei color col
xnames ”name” ”name” ...
xnames from dx
xnoticks pos1 pos2 pos3 ...
xplaces pos1 pos2 pos3 ...
xside color col lwidth line-width off
xsubticks lstyle num lwidth exp length exp on off
xticks lstyle num lwidth exp length exp off
xtitle ”title” [hei ch-hei] [color col] [font font] [dist cm] [adist cm]
y2title ”text-string” [rotate]
yaxis negate
bar dx,... dist spacing
bar dn,... fill f pattern p
bar dx,... from dy,...
bar dn,... horiz
bar dn,... width xunits,... fill col,... color col,...
fill x1,d3 color green xmin val xmax val
fill d4,x2 color blue ymin val ymax val
fill d3,d4 color green xmin val xmax val
fill d4 color green xmin val xmax val

4.2 Graph Commands (in detail)

center
Centers the graph (including the title and axis labels) in the graph box. (The command ‘scale auto’
implicitly performs ‘center’.)

colormap fct pixels-x pixels-y [color] [invert] [zmin z1] [zmax z2] [palette pal]
The colormap command is discussed in Section 9.5.

data filename [d1 d2 d3 ...] [d1=c1,c3 ...] [ignore n] [comment char] [numrows n]
Specifies the name of a file to read data from. By default, the data will be read into the next free
datasets unless the optional specific dataset names are specified.

A dataset consists of a series of (X,Y) coordinates, and has a name based on the letter d and a
number between 1 and 1000, e.g. d1 or d4. Up to 1000 datasets may be defined.

From a file with 3 columns the command ‘data "data.csv"’ would read the first and second columns
as the x and y values for dataset 1 (d1) and the first and third columns as the x and y values for

4.2. GRAPH COMMANDS (IN DETAIL) 25

begin graph

xtitle "Age"

ytitle "Weight"

data "age.csv"

key pos br compact

d1 line color red marker circle

d2 line color blue marker triangle

d3 line color green marker square

end graph

Age, John, Mary, Ken

15, 73, 65, 77

20, 80, 68, 77

30, 82, 76, 80

40, 85, 77, 82

65

70

75

80

85

W
ei
g
h
t

15 20 25 30 35 40

Age

John
Mary
Ken

Figure 4.1: Line graph with key taken from the column labels in the first data row. Left: the graph
block; middle: the dataset “age.csv”; right: the resulting graph.

dataset 2 (d2). The next data command would use dataset 3 (d3).

Such a data file looks like this:

1, 2.7, 3

2, 5, *

3, 7.8, 7

4, 9, 4

The first point of dataset d1 would then be (1, 2.7) and the first point of dataset d2 would be (1,
3). The data values can be space, tab, comma, or semi-colon separated.

Missing values can be indicated with “*”, “?”, “-”, or “.”.

The option d3=c2,c3 allows particular columns of data to be read into a dataset. In this example,
d3 would read its x-values from column 2 and y-values from column 3.

size 7 3.5

begin graph

size 6 3

title "Simple Graph"

xtitle "Time"

ytitle "Output"

data "data.csv"

d1 line marker triangle color red

end graph

0

2

4

6

8

10

O
u
tp
u
t

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Time

Simple Graph

Comments: Comments can be included with the symbol “!”. All characters from “!” until the
end of the line of the data file are ignored. It is possible to change the symbol that indicates a
comment with the option ‘comment’. E.g., with ‘data "data.csv" comment #’, lines starting with
will also be treated as comments.

Ignore header: The option ignore n makes GLE ignore the first n lines of the data file. This is
useful if the first n lines do not contain data.

Limit reading rows of data: The option numrows n limits the reading of the file to n rows of
data. Commented and empty lines are not counted as rows of data. This is useful to include only
a specific amount of data. Combined with the ignore command will instruct GLE to read only a
portion of a data file. For example

data filename.dat d1 ignore 3 numrows 3

will read only lines 4–6 from file filename.dat into dataset d1.

Auto key: If the first row of a data file does not contain actual data but instead contains column
labels, then these labels are used by GLE to create a key for the graph (Chapter 5). GLE auto-
matically detects this case by checking if all fields in the first row are valid numbers or not. If not,
then GLE assumes that the first row contains column labels. Column labels that include a space
or that could be incorrectly interpreted as a number should be double quoted. Fig. 4.1 illustrates
this with an example.

26 CHAPTER 4. THE GRAPH MODULE

-4

-3

-2

-1

1

2

3

4

-4 -3 -2 -1 1 2 3 4

discontinuity threshold 5
let d1 = floor(x)
d1 line color red

-4

-3

-2

-1

1

2

3

4

-4 -3 -2 -1 1 2 3 4

discontinuity threshold 5
let d1 = floor(x)
d1 line color red nomiss

5

10

15

20

25

-2 -1 1 2 3

let d1 = -log(sin(pi*x))
d1 line color red

Figure 4.2: An example of the auto-discontinuity detection feature.

Auto x-labels: If the first column of a data file does not contain numeric data, but instead contains
symbolic labels, then these labels are used to label the horizontal axis. For example, if the data file
contains

Mon, 1

Tue, 4

Wed, 3.5

Thu, 2

Fri, 1

Sat, 5

Sun, 4

then GLE creates an x-axis with one label for each day of the week, similar to that of the graph in
Fig. 4.16. See also the ‘xnames’ command for more details on how to add labels to an axis.

GLE can also read GZIP compressed data files. If the data file name ends in “.gz”, then GLE will
assume it is GZIP compressed and read it accordingly.

discontinuity threshold t
GLE can automatically detect discontinuities in graphs. To enable this feature, add “discontinuity
threshold t” to the graph block. The value of t is the percentage of the axis range that the graph
needs to change in one step in order to be detected as a discontinuity. Fig. 4.2 plots the “floor”
function as an example.

The discontinuity detection feature inserts a missing value at the position of each discontinuity. This
leads to gaps in the curve (Fig. 4.2, left). These can be disabled by using the “nomiss” keyword
(Fig. 4.2, middle).

dn [deresolve m] [average] line
The ‘deresolve’ option sub-samples a dataset. Given the parameter m > 1, it keeps only 1 out of
every m points (starting with the first point). If the option ‘average’ is given, then it will compute
the average of the y-values of every window of m points. This average value will be plotted at the
middle (x-value) of the window. The ‘deresolve’ option never removes the first and last point in a
dataset if it is used in conjunction with ‘dn line’.

dn err d5 errwidth width-exp dn errup nn% errdown d4
For drawing error bars on a graph. The error bars can be specified as an absolute value, as a
percentage of the y value, or as a dataset. The up and down error bars can be specified separately
e.g.,

d3 err .1

d3 err 10%

d3 errup 10% errdown d2

d3 err d1 errwidth .2

4.2. GRAPH COMMANDS (IN DETAIL) 27

0

20

40

60

80

100

0 5 10 15 20

‘d1 line impulses’

0

20

40

60

80

100

0 5 10 15 20

‘d1 line steps’

0

20

40

60

80

100

0 5 10 15 20

‘d1 line fsteps’

0

20

40

60

80

100

0 5 10 15 20

‘d1 line hist’

Figure 4.3: The impulses, steps, fsteps, and hist options of the line command.

begin graph

title "Error Bars"

dn lstyle 2 msize 1.5

d1 marker circle errup 30% errdown 1

d2 marker square err 30% errwidth .1

end graph

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Error Bars

dn herr d5 herrwidth width-exp dn herrleft nn% herrright d4
These commands are identical to the error bar commands above except that they will draw bars in
the horizontal plane.

dn key ”Dataset title”
If a dataset is given a title like this a key will be drawn. Use the key command (below, after hscale)
to set the size and position of the key. Use the key module (Chapter 5) to draw more complex keys.

dn line [impulses] [steps] [fsteps] [hist] [bar]
This tells GLE to draw lines between the points of the dataset. By default GLE will not draw lines
or markers, this is often the reason for a blank graph.

If a dataset has missing values GLE will not draw a line to the next real value, which leaves a gap
in the curve. To avoid this behavior simply use the nomiss qualifier on the dn command used to
define the line. This simply throws away missing values so that lines are drawn from the last real
value to the next real value.

The options impulses, steps, fsteps, hist, and bar draw lines as shown in Figure 4.3.

• impulses: connects each point with the xaxis.

• steps: connects consecutive points with two line segments: the first from (x1,y1) to (x2,y1)
and the second from (x2,y1) to (x2,y2).

• fsteps: connects consecutive points with two line segments: the first from (x1,y1) to (x1,y2)
and the second from (x1,y2) to (x2,y2).

• hist: useful for drawing histograms: assumes that each point is the center of a bin of the
histogram.

• bar: similar to ‘hist’, but now also separates the bins with vertical lines.

dn lstyle line-style lwidth line-width color col
These qualifiers are all fairly self explanatory. See the lstyle command in Chapter 3 (Page 21) for
details of specifying line styles.

dn marker marker-name [color c] [msize marker-size] [mdata dn] [mdist dexp]
Specifies the marker to be used for the dataset. There is a set of pre-defined markers (refer to
Appendix A.1 for a list) which can be specified by name (e.g., circle, square, triangle, diamond, cross,
...). The marker’s color can be specified with the ‘color’ option.

Markers can also be drawn using a user-defined subroutine (See the define marker command in
Chapter 2). The mdata option allows a secondary dataset to be defined which will be used to pass

28 CHAPTER 4. THE GRAPH MODULE

-1.0

-0.5

0.0

0.5

1.0

1.5

-2π -π 0 π 2π

Noisy Sine

-1.0

-0.5

0.0

0.5

1.0

1.5

-2π -π 0 π 2π

svg smooth 1

-1.0

-0.5

0.0

0.5

1.0

1.5

-2π -π 0 π 2π

svg smooth 5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2π -π 0 π 2π

deresolve 10

-1.0

-0.5

0.0

0.5

1.0

1.5

-2π -π 0 π 2π

deresolve 10 average

-1.0

-0.5

0.0

0.5

1.0

1.5

-2π -π 0 π 2π

deresolve 10 average smooth

Figure 4.4: Various smooth options.

another parameter to the marker subroutine, this allows each marker to be drawn at a different and
date dependent angle, size or colour.

The msize qualifier sets the marker size for that dataset. The size is a character height in cm, so
that the actual size of the markers will be about 0.7 of this value.

The ‘mdist’ option can be used to specify the distance between the markers on a curve. This can
be used to add markers to a plot of a continuous function. See Fig. 5.3 for an example.

dn nomiss
If a dataset has missing values, GLE will not draw a line to the next real value, which leaves a gap
in the curve. To avoid this behavior simply use the nomiss qualifier on the dn command used to
define the line. This simply ignores missing values.

begin graph

title "Ignore missing values (nomiss)"

xtitle "Time"

ytitle "Output"

data "tut.dat"

d1 lstyle 2

d2 nomiss lstyle 1 marker diamond msize .2

end graph
0

2

4

6

8

10

O
u
tp
u
t

1 2 3 4 5

Time

Ignore Missing Values (nomiss)

dn [smooth] [smoothm] line
This will make GLE draw a smoothed line through the points. A third degree polynomial is fitted
piecewise to the given points.

The smoothm alternative will work for multi valued functions, i.e., functions which have more than
one y value for each x value.

dn [svg smooth] [m] line
The option svg smooth performs a quadratic or cubic and 7 point Savitsky Golay smoothing on
the data. The parameter m specifies the number of iterations of smoothing, that is, the smoothing
algorithm is run m times on the dataset. Fig. 4.4 shows an example.

dn xmin x-low xmax x-high ymin y-low ymax y-high
These commands map the dataset onto the graph’s boundaries. The data will be drawn as if the
X axis was labeled from x-low to x-high (regardless of how the axis is actually labeled). A point in
the dataset at X = x-low will appear on the left hand edge of the graph.

dn [x2axis] [y2axis]
Sometimes one needs to draw two or more curves on the same graph that have different scales
or of which the values are measured in different units. In such cases, some of the curves may be
associated to the x2axis and/or the y2axis.

4.2. GRAPH COMMANDS (IN DETAIL) 29

begin graph

let d1 = x^2 from -2 to 2

let d2 = sin(x) from 0 to 4*pi

d1 line color red key "x^2"

d2 x2axis y2axis line color blue key "$\sin(x)$"

x2axis format pi min 0 max 4*pi dticks pi

end graph

0

1

2

3

4

-1.0

-0.5

0.0

0.5

1.0

-2 -1 0 1 2

0 π 2π 3π 4π

Scale Graph to x2/y2 Axis

x2

sin(x)

Figure 4.5: A parabola scaled to the x/y axis and the sine function scaled to the x2/y2 axis.

begin graph

...

for alpha = 1 to 10 step 2

let d[alpha] = sqrt(alpha*x) from 0 to 10

d[alpha] line color rgb(alpha/10,0,0)

next alpha

end graph

...

for alpha = 1 to 10 step 2

amove xg(xgmax)+0.1 yg(sqrt(alpha*xgmax))

write "$\alpha = "+num$(alpha)+"$"

next alpha

0

2

4

6

8

10

y
=

√
α
x

0 1 2 3 4 5 6 7 8 9 10
x

Square Root Function

α = 1

α = 3

α = 5

α = 7

α = 9

Figure 4.6: For-next loops in graph blocks and the use of “d[i]”.

The example in Fig. 4.5 illustrates this for the parabola y = x2 and the sine function y = sinx.
The former is scaled to the x/y axis as usual and the latter is scaled to the x2/y2 axis.

dn file “all.dat,xc,yc” [marker mname] [line]
The ‘file’ option specifies a file from which the dataset is to be loaded. This option is an alternative
to the “data” command (p. 24).

By default the first two columns of the data file will be read in, but other columns may be specified.
E.g., "all.dat,3,2" would read x-values from column 3 and y-values from column 2. Or, to read
the 4th dataset, specify the file as "all.dat,1,5".

If the x column is specified as ’0’ then GLE will generate the x data points. E.g., 1,2,3,4,5...

The file option also accepts variables in place of the file name, e.g.:

x$ = "test.dat,2,3"

d1 file x$ line color red

d[i] . . .
A data set identifier “di” can also be written using the array notation “d[i]”. Any valid expression
that results in an integer can be used inside d[. . .]. This is useful if you want to select a data set
based on the result of an expression.

If-then-else, for-next loops, and other control constructs can be used insdide a graph block. These
can be combined with the d[i] notation to draw many similar functions. See Fig. 4.6 for an example
that draws the functions y =

√
αx with α an integer constant.

draw call
Executes subroutine ‘call’ while drawing the graph. The call is drawn in the current layer (See “begin
layer”). The output is clipped to the graph window and the subroutine can use the functions ‘xg()’,
’yg()’, and variables ‘xgmin’, ‘ygmin’, etc. This is useful for drawing a custom graph background
(Fig. 4.7) or for defining a custom graph type (Section 4.5.1).

30 CHAPTER 4. THE GRAPH MODULE

sub background

amove xg(xgmin) yg(ygmin)

local wd = xg(xgmax)-xg(xgmin)

local hi = yg(ygmax)-yg(ygmin)

colormap y 0 0 0.8 1 1 200 wd hi

end sub

begin graph

...

d1 line marker wdiamond color steelblue

d2 line marker wcircle color green

begin layer 150

draw background

end layer

end graph

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Chart 1

M1

M2

Figure 4.7: Using the “draw” command to draw a graph background.

fullsize
This is equivalent to scale 1 1, noborder. It makes the graph size command specify the size and
position of the axes instead of the size of the outside border. See Fig. 4.12 (right) for an example.

hscale h
Sets the length of the xaxis to h times the size of the graph box (default is 0.7). h can also be set
to ‘auto’. See scale for more details.

key pos tl nobox hei exp offset xexp yexp
This command allows the features of a key to be specified. The pos qualifier sets the position of
the key. E.g., tl=topleft, br=bottomright, etc.

let ds = exp [from low] [to high] [step exp] [where exp]
This command defines a new dataset as the result of an expression on the variable x over a range
of values. For example:

let d1 = sin(x)+log(x) from 1 to 100 step 1

NOTE: The lack of spaces inside the expression are necessary.

Here are some further examples:

begin graph

...

let d1 = 1/x from 0.2 to 10

let d2 = sin(x)*2+2 from 0 to 10

let d3 = 10*(1/sqrt(2*pi))* &

exp(-2*(sqr(x-4)/sqr(2)))) &

from 0.2 to 10 step 0.1

dn line

d2 lstyle 2 color red

d3 lstyle 3 color blue

end graph

0

1

2

3

4

5

O
u
tp
u
t

0 1 2 3 4 5 6 7 8 9

Time

Calculating Formulas

The let command also allows the use of other datasets. E.g., to generate an average of two datasets:

data "file.csv" d1 d2

let d3 = (d1+d2)/2

More precisely, this command creates a dataset with as x-values the union of the x-values from d1
and d2, and as y-values the average of the y-values of d1 and d2. That is, the let command first
computes the set of x-values by taking the union of the sets of x-values of all datasets that appear in
the expression together with the x-values generated by the from/to/step construct. Then it iterates
over these x-values. In each iteration, it assigns the x-value to the variable ‘x’, and, for each dataset
included in the expression, it assigns its corresponding y-value to the dataset identifier. Then it
evaluates the given expression exp and adds the resulting point (x,exp) to the target dataset. If the

4.2. GRAPH COMMANDS (IN DETAIL) 31

let expression includes more than one dataset, and the x-ranges of these datasets are different, then
linear interpolation is used to compute the missing y-values.

If the xaxis is a ‘log’ axis then the ‘step’ option is read as the number of steps to produce rather
than the size of each step. The “from”, “to”, and “step” parameters are optional. The values of
“from” and “to” default to the horizontal axis’ range.

This command can also be used to modify the values in a data set, e.g., ‘let d1 = 2*d1’, will multiply
all y-values in dataset d1 by 2.

The option ‘where exp’ can be used to select values from a dataset, e.g., ‘let d1 = d2 where ((x >
10) and (x < 20))’ will select all points from d2 for which the x-value is between 10 and 20; ‘let d1
= d2 where d2 < 10’ will select all points for which the y-value is below 10.

let ds = x-exp, y-exp [from low] [to high] [step exp] [where exp]
This syntax for the ‘let’ command is similar to the previous one, but now two expressions can be
given: x-exp is used to compute the x-values of the points in the target dataset ‘ds’ and y-exp is
used to compute the y-values. The parameter that is modified by the from/to/step construct is
still the variable ‘x’.

This syntax can be used to perform transformations on both the x and the y-values of the points
in a dataset. For example,

let d1 = 2*x, d1+4

will multiply the x-values of d1 by 2 and add 4 to the y-values.

This syntax can also be used to define datasets that are not functions. The following example
defines a circle:

let d1 = sin(x), cos(x) from 0 to 2*pi

let dn = [routine] dm [options] [slopevar] [offsetvar] [rsqvar]
GLE includes several fitting routines that allow an equation to be fit to a data series. These routines
can be included in a ‘let’ expression as shown above, where dn will contain results of fitting routine
to the data in dm.

The following routines are available :

• linfit: fits the data in dm to the straight line equation y = m · x+ b.

• logefit: fits the data in dm to the equation y = a · exp(b · x).
• log10fit: fits the data in dm to the equation y = a · 10b·x.
• powxfit: fits the data in dm to the equation y = a · xb.

The value for a is stored in ‘slopevar’ and the value for b is stored in ‘offsetvar’. The r2 value of
the fit is stored in ‘rsqvar’. Note that these variables are optional.

The following options are available :

• from xmin to xmax The range of the data in dn extends from the xmin to xmax as specified
by the user.

• step xstep Specifies the x-resolution of the fitted equation. Similar to the step option of the
let command.

• rsq var The r2 value of the fit will be stored in var.

• xmin x1, xmax x2, ymin y1, ymax y2 Only use data points from dm in the given window to
fit the equation. That is, only data points (x, y) from dm are used for which x1 ≤ x ≤ x2 and
y1 ≤ y ≤ y2.

• limit data x The range of the data in dn extends from the minimum x value in dm to the
maximum x value in dm.

• limit data y The range of the data in dn extends from the x value of the minimum y value
in dm to the x value of the maximum y value in dm.

32 CHAPTER 4. THE GRAPH MODULE

slope = 0; offs = 0; rsquare = 0

set texlabels 1

begin graph

title "Linear fit"

xtitle "x"

ytitle "$y = ax + b$"

data "data.csv"

let d2 = linfit d1 from 0 to 10 slope offset rsquare

d1 marker circle color blue

d2 line color red

end graph

begin key

pos br nobox

text "$y = "+format$(slope,"fix 2")+"x + "+format$(offset,"fix 2")+"$"

text "$r^2 = "+format$(rsquare,"fix 2")+"$"

end key

0

2

4

6

8

10

y
=

a
x
+
b

0 2 4 6 8 10
x

Linear Fit

y = 0.76x+ 2.04
r2 = 0.73

Figure 4.8: Fitting linear equations ‘let d2 = fitlin d1’.

• limit data The range of the data in dn extends from the greater of the x value of the minimum
y value or the minimum x value in dm to the greater of the x value of the maximum y value
or the maximum x value in dm.

let dn = fit dm with eqn [options]
Fit the coefficients of a given equation so that it best fits the data in dataset dm. Fig. 4.9 shows an
example. The equation to fit is given by the ‘with’ option. In this example, it is a sin(bx)+ cx2+d.
GLE will search for values for the coefficients a, b, c, and d such that the given equation fits dm
best. Note that all used coefficients must be initialized to zero before the graph block (see figure).

The fit command has the same options as the linfit command. In addition, it has the following
settings.

• with eqn Gives the equation to fit.

• eqstr strvar$ Sets the string variable in which the string representation of the fitted equation
is to be stored.

• format fmt$ Sets the numeric format to use while converting the fitted equation into its string
representation. See the documentation of format$ on page 52 for a description of the syntax.

let ds = hist dm [from x1] [to x2] [bins n] [step n]
Computes a histogram for the values in ‘dm’ and store the result in ‘dn’. E.g., if the file ‘normal.csv’
contains a single column with samples from the standard Gaussian distribution, then the graph block

begin graph

...

data "normal.csv"

let d2 = hist d1 step 0.5

d2 line bar color red

end graph

will result in the histogram shown in Fig. 4.10.

The option ‘bins’ specifies the number of bins in the histogram. Alternatively, the option ‘step’ can
be used to specify the bin size.

let ds = . . . [nsteps n]
The ‘nsteps’ options is an alternative to the ‘step’ option of the ‘let’ command. It specifies the total
number of steps rather than the step width. The default value for ‘nsteps’ is 100.

let ds = . . . [range dn]
Takes the x-values for this ‘let’ expression from dataset ‘dn’. This is useful if you need to define a
function for the same x-values as the ones you have in a given dataset.

4.2. GRAPH COMMANDS (IN DETAIL) 33

a = 0; b = 0; c = 0; d = 0; r = 0

set texlabels 1

begin graph

xtitle "x"

ytitle "$f(x)$"

title "$f(x) = a\sin(bx)+cx^2+d$"

data "data.csv"

let d2 = fit d1 with a*sin(b*x)+c*x^2+d rsq r

d1 marker circle color blue

d2 line color red

end graph

fct$ = "$f(x) = "+format$(a,"fix 2")+ &

"\sin("+format$(b,"fix 2")+"x)+"+ &

format$(c,"fix 2")+"x^2+"+ &

format$(d,"fix 2")+"$"

begin key

pos br nobox

text fct$

text "r^2 = "+format$(r,"fix 3")

end key

-4

-2

0

2

4

6

8

10

12

14

f
(x
)

0 1 2 3 4 5 6 7 8 9 10
x

f(x) = a sin(bx) + cx2 + d

f(x) = 2.80 sin(0.64x) + 0.14x2 + 1.13

r2 = 0.844

Figure 4.9: Fitting arbitrary curves ‘let d2 = fit d1 with . . .’.

0

20

40

60

80

100

F
re
q
u
en

cy

-4 -3 -2 -1 0 1 2 3 4

Value

1000 Samples of N(µ = 0, σ = 1)

Figure 4.10: An example of ‘let dn = hist dn’.

math
Use this option to create a math mode graph, with the axis crossing at point (0, 0). Fig. 4.11 shows
an example. The corresponding GLE code is as follows:

begin graph

math

title "f(x) = sin(x)"

xaxis min -2*pi max 2*pi ftick -2*pi dticks pi format "pi"

yaxis dticks 0.25 format "frac"

let d1 = sin(x)

d1 line color red

end graph

nobox
This removes the outer border from the graph.

size x y
Defines the size of the graph in cm. This is the size of the outside box of a graph. The default size
of the axes of the graph will be 70% of this, (see scale). If no size command is given, then the size
of the graph is initialized to the size of the figure (pagewidth() by pageheight()).

scale h v
Sets the length of the xaxis to h times the width of the graph box, and the length of the yaxis to

34 CHAPTER 4. THE GRAPH MODULE

-1

-3/4

-1/2

-1/4

1/4

1/2

3/4

1

-2π -π π 2π

f(x) = sin(x)

-1.0 -0.5 0.5 1.5 2.0

f(x) = 1/x+ 1/(x− 1)

Figure 4.11: Left: math mode graph. Right: graph illustrating the ‘origin’ option of ‘xaxis’.

-1.0

-0.5

0.0

0.5

1.0

0 π/2 π 3π/2 2π

scale 0.7 0.7

-1.0

-0.5

0.0

0.5

1.0

0 π/2 π 3π/2 2π

scale auto

-1.0

-0.5

0.0

0.5

1.0

0 π/2 π 3π/2 2π

fullsize

Figure 4.12: Different axis scaling options: default, automatic, and ‘fullsize’. The blue dot indicates the
origin (x, y) of the graph, that is, the graph is generated with ‘amove x y’ followed by ‘begin graph’ ...
‘end graph’. The xaxis is labeled using the option ‘format pi’.

v times the height of the graph box. For example, with ‘size 10 10’ and ‘scale 0.7 0.7’, the length
of the x and y axis will be 7 centimeter. ‘scale 1 1’ makes the xaxis (yaxis) the same length as the
width (height) of the graph box, which is useful for positioning some graphs (see ‘fullscale’). The
default value for h and v is 0.7.

If h or v is set to the keyword auto, then the graph is scaled automatically in that direction to fill
the entire box. The command ‘scale auto’ automatically scales the graph in both directions. Note
that autoscale also moves the graph, similar to the command ‘center’.

This size command is equivalent to the two commands ‘hscale h’ and ‘vscale v’ and allows one to
specify the two scale factors with one command.

Fig. 4.12 shows examples of the different axis scaling options: default, automatic, and ‘fullsize’.

title ”title” [hei ch-hei] [color col] [font font] [dist cm]
This command gives the graph a centered title. The list of optional keywords specifies features of
it. The dist command is used for moving the title up or down. The default title font size is the
value of the ‘hei’ setting multiplied by the setting ‘titlescale’ (default 1.16).

vscale v
Sets the length of the yaxis to v times the size of the graph box (default is 0.7). v can also be set
to ‘auto’. See scale for more details.

x2labels on
This command ‘activates’ the numbering of the x2axis. There is a corresponding command ‘y2axis
on’ which will activate y2axis numbering.

xaxis — yaxis — x2axis — y2axis
A graph is considered to have four axes: The normal xaxis and yaxis as well as the top axis (x2axis)
and the right axis (y2axis).

Any command defining an xaxis setting will also define that setting for the x2axis.

The secondary axes x2 and y2 can be modified individually by starting the axis command with the
name of that axis. E.g.,

4.2. GRAPH COMMANDS (IN DETAIL) 35

begin graph

size 6 3

xtitle "X-axis"

ytitle "Y-axis"

x2title "X2-axis"

y2title "Y2-axis"

x2ticks length 0.6

x2subticks color red

end graph
0

2

4

6

8

10

Y
-a
x
is

Y
2
-a
x
is

0 1 2 3 4 5 6 7 8 9 10

X-axis

X2-axis

xaxis angle α
Rotate the labels by α degrees. Fig. 4.17 gives an example.

xaxis base exp-cm
Scale the axis font and ticks by exp-cm. The default value of the ‘base’ setting is the value of ‘hei’.

xaxis color col font font-name hei exp-cm lwidth exp-cm
These axis qualifiers affect the colour, lstyle, lwidth, and font used for drawing the xaxis (and the
x2axis). These can be overridden with more specific commands. E.g., ‘xticks color blue’ would
override the axis colour when drawing the ticks. The subticks would also be blue as they pick up
tick settings by default.

xaxis dsubticks sub-distance
See xaxis nticks below.

xaxis format format-string
Specifies the number format for the labels. See the documentation of format$ on page 52 for a
description of the syntax. Example:

xaxis format "fix 1"

xaxis grid
This command makes the xaxis ticks long enough to reach the x2axis and the yaxis ticks long
enough to reach the y2axis. When used with both the x and y axes this produces a grid over the
graph. Use the xticks lstyle command to create a faint grid.

It is possible to have grid lines for subticks or to have normal subticks. Figure 4.13 shows the
different options.

xaxis log
Draws the axis in logarithmic style, and scales the data logarithmically to match (on the x2axis or
y2axis it does not affect the data, only the way the ticks and labeling are drawn)

Be aware that a straight line should become curved when drawn on a log graph. This will only
happen if you have enough points or have used the smooth option.

xaxis min low max high
Sets the minimum and maximum values on the xaxis. This will determine both the labeling of the
axis and the default mapping of data onto the graph. To change the mapping see the dataset dn
commands xmin, ymin, xmax, and ymax.

xaxis nofirst nolast
These two switches simply remove the first or last (or both) labels from the graph. This is useful
when the first labels on the x and y axis are too close to each other.

xaxis nticks number dticks distance dsubticks distance
nticks specifies the number of ticks along the axis. dticks specifies the distance between ticks and
dsubticks specifies the distance between subticks. For example, to get one subtick between every
main tick with main ticks 3 units apart, simply specify dsubticks 1.5. Alternatively, one can also
use nsubticks.

By default ticks are drawn on the inside of the graph. To draw them on the outside use the
command:

36 CHAPTER 4. THE GRAPH MODULE

0 1 2 3 4 5

(a) No Subticks

xaxis grid

0 1 2 3 4 5

(b) Subticks Grid Lines

xaxis grid
xsubticks on

0 1 2 3 4 5

(c) Normal Subticks

xaxis grid
xsubticks on
xsubticks length 0.12

0 1 2 3 4 5

(d) Various Settings

axis grid
ticks color grey40
subticks on
subticks lstyle 2

100

101

102

103

0 1 2 3

(e) Various Settings

Figure 4.13: Different grid options: no subticks, grid lines at each subtick, or grid lines at main ticks
with regular subticks. The box on each graph indicates which GLE commands to use for each option.

xticks length -.2

yticks length -.2

xaxis ftick x0 dticks distance nticks number
Labels the xaxis starting from position ‘x0’, with distance ‘distance’ between the ticks. This will
result in a tick at the positions x0 + i× distance, with i ranging from 0 to (number − 1).

xaxis off
Turns the whole axis off — labels, ticks, subticks and line. Often the x2axis and y2axis are not
required, they could be turned off with the following commands:

x2axis off

y2axis off

xaxis shift cm-exp
This moves the labeling to the left or right, which is useful when the label refers to the data between
the two values.

xaxis symticks
By default, the axis ticks are drawn on the inside of the graph frame. To make them appear on the
outside, use a negative ticks length. E.g., ‘xticks length -0.1’ will produce 1mm ticks on the outside
of the graph frame. The ‘symticks’ option enables tick on both the inside and outside of the graph
frame. This option is the default in ‘math’ mode. (See the ‘math’ command.)

xlabels [font font-name] [hei char-hei] [color col] [dist dis] [on] [off] [log lgmode]
This command controls the appearance of the axis labels. The default label font size is the value of
the ‘hei’ setting multiplied by the setting ‘alabelscale’ (default 0.8). The default value for dist
is controlled by the setting ‘alabeldist’.

The command ‘xlabels off’ turns the labels for the xaxis off. Similarly, ‘xlabels on’ turns them
on (the default for the x and y axis, but not for the x2 and y2 axis).

Possible values for lgmode are: ‘off’, ‘l1’, ‘l25’, and ‘l25b’. These control the subticks for a log
scale axis. The value ‘off’ means no subticks (i.e., only main ticks at 10k), ‘l1’ means 10 subticks,
and ‘l25’ means two subticks at the positions 2 · 10k and 5 · 10k. The value ‘l25b’ is identical to
‘l25’ except that now the format function (given with the ‘format’ option of the ‘xaxis’ command)
is used to label the subticks. In the other case, the subticks are labeled with the values ‘2’ and ‘5’ in
a small font (0.7 times the size of the main tick labels). These settings are illustrated in Fig. 4.14.

4.2. GRAPH COMMANDS (IN DETAIL) 37

100

101

102

103

0 1 2 3 4 5

ylabels log off

1

2

3

4

5

6

7

8
9

10

0 1 2 3 4 5

ylabels log l1

100

2

5

101

2

5

102

2

5

103

0 1 2 3 4 5

ylabels log l25

1

2

5

10

20

50

100

0 1 2 3 4 5

ylabels log l25b

Figure 4.14: Possibilities for the ‘log’ option of ‘ylabels’.

1 10 102 1 10 102

1 2 5 10 2 5 102

add ‘xlabels log off’ add ‘xsubticks off’

also turns off sublabels

1 10 102 1 2 5 10 2 5 102

1 10 102

add ‘xsubticks on’ add ‘xlabels log l25’

also turns on subticks

Figure 4.15: How log subticks and log sublabels interact.

xnames ”name” ”name” ...
This command replaces the numeric labeling with text labels. Given data consisting of seven
measurements, taken from Monday to Sunday, one per day then

xnames "Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun"

xaxis min 0 max 6 dticks 1

would give the desired result (Fig. 4.16). Note it is essential to define a specific axis minimum,
maximum, dticks, etc., otherwise the labels may not correspond to the data.

If there isn’t enough room on the line for all the names then simply use an extra xnames command.

xnames from dx
Takes the labels for the xaxis from dataset dx. For example, if the data file contains:

0, Mercury, 0.382

1, Venus, 0.949

2, Mars, 0.532

3, Jupiter, 11.21

begin graph

ytitle "Happyness"

title "Names \& Places"

xnames "Mon" "Tue" "Wed" "Thu"

xnames "Fri" "Sat" "Sun"

xaxis min 0 max 6 dticks 1

...

end graph 0

4

8

12

16

20

H
a
p
p
y
n
es
s

Mon Tue Wed Thu Fri Sat Sun

Names & Places

Figure 4.16: Example illustrating the “xnames” command.

38 CHAPTER 4. THE GRAPH MODULE

4, Saturn, 9.449

5, Uranus, 4.007

6, Neptune, 3.883

then ‘ynames from d1’ uses the data from the second column as labels for the yaxis (Fig. 4.17).

xnoticks pos1 pos2 pos3 ...
Disables the axis ticks at the given positions.

xplaces pos1 pos2 pos3 ...
This is similar to the xnames command but it specifies a list of points which should be labeled.
This allows labeling which isn’t equally spaced. For example:

xplaces 1 2 5 7

xnames "Mon" "Tue" "Fri" "Sun"

If there isn’t enough room on the line for all the places then simply use an extra xplaces command.

xside color col lwidth line-width off
This command controls the appearance of the axis line, i.e. the line to which the ticks are attached.

xsubticks lstyle num lwidth exp length exp on off
This command gives fine control of the appearance of the axis subticks.

GLE uses an algorithm that decides based on the distance between the main ticks if it should draw
subticks or not. However, you can override the decision of this algorithm and explicitly turn the
subticks on or off by means of the commands “xsubticks on” or “xsubticks off”.

xticks lstyle num lwidth exp length exp off
This command gives fine control of the appearance of the axis ticks. Note: To get ticks on the
outside of the graph, i.e. pointing outwards, specify a negative tick length:

xticks length -.2

yticks length -.2

xtitle ”title” [hei ch-hei] [color col] [font font] [dist cm] [adist cm]
This command gives the axis a centered title. The list of optional keywords specify features of
it. The dist option is used for controlling the distance between the title and the axis labels. The
default font size is the value of the ‘hei’ setting multiplied by the setting ‘atitlescale’ (default
1.0). The default value for dist is controlled by the setting ‘atitledist’. The ‘adist’ option is an
alternative to ‘dist’, but specifies the distance between the title and axis itself. This option is useful
for perfectly aligning, e.g., the y-axis titles of multiple graphs (if the graphs are in one vertical
column, but their y-axis labels have a different width).

xaxis negate
This is reversed the numbering on the y axis. For use with measurements below ground, where you
want zero at the top and positive numbers below the zero.

y2title ”text-string” [rotate]
By default the y2title is written vertically upwards. The optional rotate keyword changes this
direction to downwards. The rotate option is specific to the y2title command.
begin graph

xaxis min 0 max 9 nofirst nolast

xaxis hei 0.4 nticks 6 dsubticks 0.3

xaxis lwidth 0.05 color red

xticks length 0.2

ytitle "Log Yaxis"

yaxis log min 1 max 10

yticks length 0.2

y2axis min 1 max 10000 format "sci 0 10"

y2side color blue

y2title "Y2title rotated " hei 0.3 rotate

x2axis off

y2labels on

let d1 = sin(x)*4+5 from 0 to 9

dn line color blue

end graph

1

2

5

10

L
o
g
Y

A
x
is

100

101

102

103

104 Y
2
T
itle

R
o
ta
ted

1.5 3.0 4.5 6.0 7.5

4.3. BAR GRAPHS 39

4.3 Bar Graphs

Drawing a bar graph is a subcommand of the normal graph module. This allows bar and line graphs to
be mixed. The bar command is quite complex as it allows a great deal of flexibility. The same command
allows stacked, overlapping and grouped bars.
For stacked bars use separate bar commands as in the first example below:

bar d1 fill black

bar d2 from d1 fill gray10

For grouped bars put all the datasets in a list on a single bar command:

bar d1,d2,d3 fill gray10,gray40,black

begin graph

title "Bean stalk data" dist 0.1

xtitle "Year measured"

ytitle "Height of stalk"

xaxis dticks 1

yaxis min 0 max 6 dticks 2

data "gc_bean.dat"

bar d1,d2,d3 fill blue,orange,red

end graph
0

2

4

6

H
ei
g
h
t
o
f
st
a
lk

85 86 87 88 89 90 91

Year measured

Bean Stalk Data

bar dx,... dist spacing
Specifies the distance between bars in dataset(s) dx,.... The distance is measured from the left hand
side of one bar to the left hand side of the next bar. A distance of less than the width of a bar
results in the bars overlapping.

bar dx,... from dy,...
This sets the starting point of each bar in datasets dx,... to be at the value in datasets dy,..., and is
used for creating stacked bar charts. Each layer of the bar chart is created with an additional bar
command.

bar d1,d2

bar d3,d4 from d1,d2

bar d5,d6 from d3,d4

Note 1: It is important that the values in d3 and d4 are greater than the values in d1 and d2.

Note 2: Data files for stacked bar graphs should not have missing values, replace the * character
with the number on its left in the data file.

begin graph

...

data "gc_bean.dat"

bar d1 fill gray20

bar d2 from d1 fill white

end graph
0

1

2

3

4

5

H
ei
g
h
t
o
f
st
a
lk

85 86 87 88 89 90 91

Year measured

Bean Stalk Data

bar dn,... width xunits,... fill col,... color col,...
The rest of the bar qualifiers are fairly self explanatory. When several datasets are specified, separate
them with commas (with no spaces between commas).

bar d1,d2 width 0.2 dist 0.2 fill gray10,gray20 color red,green

bar dn,... fill f pattern p
The ‘pattern’ option specifies the pattern used for filling the bars. Fig. 3.7 gives an overview of the
predefined patterns that can be used here. Fig. 4.17 shows an example of the command ‘bar d2
horiz fill red pattern shade2’.

bar dn,... horiz
The option ‘horiz’ makes the bars horizontal instead of vertical (Fig. 4.17).

40 CHAPTER 4. THE GRAPH MODULE

Merc
ur
yVe

nu
s

Mars
Ju
pit

erSa
tu
rnUr

an
usNe

pt
un

e

0 1 2 3 4 5 6 7 8 9 10 11 12

Size relative to Earth

Planet Sizes

Figure 4.17: Illustration of the ‘horiz’ and ‘pattern’ keywords of the ‘bar’ command, and of the ‘angle’
option of the ‘yaxis’ command.

4.4 3D Bar Graphs

3d Bar graphs are now supported, the commands are:

bar d1,d2 3d .5 .3 side red,green notop

bar d3,d4 3d .5 .3 side red,green top black,white

Take note of comma’s.

bar dx,... 3d xoffset yoffset side color list top color list [notop]

3d xoffset yoffset
Specifies the x and y vector used to draw the receding lines, they are defined as fractions of the
width of the bar. A negative xoffset will draw the 3d bar on the left side of the bar instead of the
right hand side.

side color list
The color of the side of each of the bars in the group.

top color list
The color of the top part of the bar

notop
Turns off the top part of the bar, use this if you have a stacked bar graph so you only need sides
on the lower parts of each stack.

begin graph

...

data "gc_bean.dat"

bar d1,d2,d3 dist 0.25 width 0.15 3d 1 0.25 &

fill red,blue,forestgreen &

side orange,dodgerblue,green

end graph 0

1

2

3

4

5

6

H
ei
g
h
t
o
f
st
a
lk

86 87 88 89 90

Year measured

Bean Stalk Data

4.5 Filling Between Lines

fill x1,d3 color green xmin val xmax val
Fills between the xaxis and a dataset, use the optional xmin, xmax, ymin, ymax qualifiers to clip the
filling to a smaller region

fill d4,x2 color blue ymin val ymax val
This command fills from a dataset to the x2axis.

4.5. FILLING BETWEEN LINES 41

begin graph

...

begin layer 300

fill x1,d1 color rgba255(255,0,0,80)

d1 line color red key "$1.5\sin(x)+1.5$"

end layer

begin layer 301

fill x1,d2 color rgba255(0,128,0,80)

d2 line color green key "$1/x$"

end layer

...

end graph
0

1

2

3

4

5

6

O
u
tp
u
t

0 1 2 3 4 5 6 7 8 9

Time

Semi-Transparent Fills

1.5 sin(x) + 1.5
1/x

10√
2π

exp

(
−2(x−4)2

22

)

Figure 4.18: A graph with semi-transparent fills.

begin graph

title "$r = \cos(2\theta)$"

xaxis min -1.1 max 1.1

yaxis min -1.1 max 1.1

begin layer 0

draw polar_grid radius 2 rings 5 sectors 12

draw polar "cos(2*t)" from 0 to 2*pi fill wheat

end layer

end graph
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

r = cos(2θ)

Figure 4.19: Polar plots using the “draw” command and the “polar” function from “polarplot.gle”.

fill d3,d4 color green xmin val xmax val
This command fills between two datasets.

fill d4 color green xmin val xmax val
This command treats the dataset as a polygon and fills it. The dataset should be a closed polygon.

begin graph

title "Shading areas of the graph" dist 0.1

xtitle "Height of stalk"

ytitle "Year measured"

xaxis min 86 max 90

yaxis min 0 max 6

data "gc_fill.dat"

fill d2,x2 color gray40

fill x1,d1 color gray10 xmin 85 xmax 88

fill x1,d1 color gray90 xmin 88 xmax 91

dn line

end graph

0

1

2

3

4

5

6

Y
ea
r
m
ea
su
re
d

86 87 88 89 90

Height of stalk

Shading Areas of the Graph

To create semi-transparent fills, use the function “rgba255” to specify the fill color. This function allows
one to define a semi-transparent color with red, green, blue, and alpha components. The alpha component
defines the transparency. Fig. 4.18 shows an example. To create output with semi-transparent colors,
GLE’s command line option “-cairo” must be used.

4.5.1 Polar Plots

GLE supports polar plots by means of the “polar” and “polar grid” functions from the library file “po-
larplot.gle”. See Fig 4.19 for an example. This example also illustrates the use of the “draw” function
(p. 29) and the “layer” block (p. 42). The “layer” block is used here to make sure that the polar grid is
drawn before the axis are drawn.

42 CHAPTER 4. THE GRAPH MODULE

4.6 Notes on Drawing Graphs

4.6.1 Importance of Order

Most of the graph commands can appear in any order, but in some cases order is significant.
As some let commands operate on data which has been read into datasets, the data commands should
precede the let commands.
The wildcard dn command should appear before specific d1 commands which it will override.
By default xaxis commands also change the x2axis, and xlabels commands also change x2labels, so to
specify different settings for the x and x2 axes, put the x2 settings after the x settings.

begin graph

size 10 10

data a.dat

let d2 = d1*3

dn marker square lstyle 3 ! sets d1 and d2

d2 marker dot

xaxis color green

xticks color blue

x2axis color black

end graph

4.6.2 Layers

GLE draws a graph as a sequence of layers. The following are the default layers.

200 A grid (e.g., “yaxis grid”)

350 Fill type graphs (p. 40)

350 Bar type graphs (p. 39)

500 Graph axis

700 Line type graphs

700 Error bars

700 Marker type graphs

700 Draw commands (p. 29)

There are only 4 default layers. Each layer has a unique number (200, 350, 500, and 700). Layers are
drawn from small to large. Within a layer, the elements are drawn in the order indicated above. For
example, error bars are drawn after line type graphs.
It is possible to define new layers with the “begin layer / end layer” block. This is illustrated by the
following example.

begin graph

data "file.csv"

...

begin layer 400

d1 line color red

end layer

end graph

This example defines a custom layer with the unique number 400 and one line type graph. The result
will be that d1 is drawn after any defined bar type graphs and before the graph x/y axis.
More examples of layers can be found in the following figures:

• Fig. 4.7 shows how a layer can be used to draw a custom graph background.

• Fig. 4.18 shows how layers can be used to combine fill type and line graphs.

• Fig. 4.19 shows how layers can be used to draw a custom grid.

4.6. NOTES ON DRAWING GRAPHS 43

4.6.3 Line Width

When scaling a graph up or down for publication the default line width may need changing. To do this
simply specify a set lwidth command before beginning the graph.

size 10 10

set lwidth .1

begin graph

...

end graph

44 CHAPTER 4. THE GRAPH MODULE

Chapter 5

The Key Module

The key module is used for drawing keys. The key can be either specified through a separate key block or
directly in the graph block (by prefixing the key commands with the keyword “key”). This chapter first
discusses how to define the key using a key block. Section 5.3 shows how to include the key commands
directly in a graph block.

The key block usually comes directly after the graph block as follows:

begin graph

...

end graph

begin key

position tr

offset 0.2 0.2

text "Blue" marker circle fill blue

text "Red" marker triangle fill red lstyle 2

text "Orange" marker square fill orange lstyle 3

end key

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

Blue
Red
Green

The key block consists of two parts: (a) global commands, and (b) the definitions of the entries. Global
commands appear at the beginning of the key and define, e.g., the position of the key. In the example,
“position” and “offset” are global commands. Multiple global commands are allowed on a given line. The
entry definitions start after the global commands. All commands relevant to a given entry must appear
on the same line. In the example, there are three entry definitions and each definition starts with the
“text” command. Entries can be organized into columns using the “separator” command.

There are two possible ways to set the position of a key: (a) the key can be positioned relative to the
graph, and (b) it can be positioned at given coordinates. To position the key relative to the graph, use
the commands “position” and (optionally) “offset”. For example,

position tr

offset 0.2 0.2

45

46 CHAPTER 5. THE KEY MODULE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Various key positions

justify bc

absolute pagewidth()/2 0.1

position tl

position br

offset 0.25 0.25

position tr

offset -0.1 0

Figure 5.1: Various positions for the key.

places the key at the top-right corner of the graph 0.2 cm from each side. To position the key at given
coordinates use the “justify” and “absolute” commands. For example,

justify bc

absolute 5 0.1

places the bottom-center of the key at position (5 cm, 0.1 cm). Fig. 5.1 gives some examples of positioning
the key.

5.1 Global Commands

Global commands appear at the start of the key block. They control the position of the key and various
other properties of the key. Several global key commands may appear on one line in the script.

absolute x y
Places the key at position (x, y) on the figure. The anchor point of the key is specified with the
“justify” command.

base h or row h
Sets the base scale of the entries. The sizes of all components are initialized based on this. E.g., to
change the size of the filled box in an entry, use this command.

boxcolor c
Set the background color of the key to c.

coldist d
Sets the distance between columns. (To obtain a key with multiple columns, use the “separator”
command.)

compact
Creates a more compact key by combining the “line” and “marker” fields into one field. The effect
of this is shown in Fig. 5.3.

dist d
Sets the distance between the different components of an entry (the marker, the line, the fill, and
the text).

hei h
Sets the height of the text in the entries of the key. If this command is not given, then the current
height is used. (To set the current height, use “set hei”, see page 20.)

5.2. ENTRY DEFINITION COMMANDS 47

justify x
Sets the anchor point of the key. Possible values: tl, bl, tr, br, tc, bc, lc, rc, cc. These stand for
top-left, bottom-left, top-right, bottom-right, top-center, bottom-center, left-center, right-center,
and center. Use this command in combination with the “absolute” command. Fig. 5.1 gives some
examples.

llen x
Sets the length of the line in the entries.

lpos x
Sets the vertical position of the line in the entries. (This is normally set automatically.)

margins x y
Sets the margins of the key block. (The space between the border and the entries.)

nobox
Do not draw a border around the key.

off
Disable this key.

offset x y
Specifies the distance in cm between the position specified with the “position” or “pos” command
and the actual key. A negative offset places the key outside of the graph (Fig. 5.1).

position x or pos x
Specifies the position of the key on the graph. Possible values: tl, bl, tr, br, tc, bc, lc, rc, cc. These
stand for top-left, bottom-left, top-right, bottom-right, top-center, bottom-center, left-center, right-
center, and center. Optionally, the “offset” command can be combined with this command. Fig. 5.1
gives some examples.

5.2 Entry Definition Commands

Each entry in the key is represented by one line in the key block, and all commands for a given entry
must appear on that line. The following commands can be used to define key entries.

color c
Sets the color of the line and marker. The other components of the key are drawn in the default
color. (To set the default color, use “set color”, see page 19.)

fill p
Sets the fill color or pattern.

line
Shorthand for “lstyle 1”.

lstyle s
Sets the line style.

lwidth
Sets the width of the line.

marker m
Sets the marker.

mscale x
Sets the scale of the marker.

msize x
Sets the size of the marker.

pattern x
Sets the filling pattern. Fig. 3.7 shows examples of filling patterns.

48 CHAPTER 5. THE KEY MODULE

Red
Green
Blue

Orange
Purple
Black

Figure 5.2: Defining a key with multiple columns.

-1.0

-0.5

0.0

0.5

1.0

0 π/2 π 3π/2 2π

Implicitly defined key

Sine
Cosine

Figure 5.3: Defining the key together with the graph block. This figure also illustrates the ‘mdist’ option
of the ‘marker’ command.

separator [lstyle s]
Use this command to divide the key into multiple columns. If the “lstyle” option is given, then a
line is drawn between the columns in the given style. Possible values are given with the description
of the “set lstyle” command on page 21. The “separator” command should be inserted between the
key entries that should go in different columns. For example,

begin key

position bl

line color red text "Red"

line color green text "Green"

line color blue text "Blue"

separator

line color orange text "Orange"

line color purple text "Purple"

line color black text "Black"

end key

will result in the key shown in Fig. 5.2.

text s
The text for the entry.

textcolor c
Sets the color of the key entry’s text.

5.3 Defining the Key in the Graph Block

It is also possible to define the key in the graph block itself. This is accomplished by prefixing global key
commands with the keyword “key”. The entries are in this case defined with the “dn” commands and
the labels are set with the “key” option to these commands.
The following presents an example:

begin graph

title "Implicitly defined key"

let d1 = sin(x)

5.3. DEFINING THE KEY IN THE GRAPH BLOCK 49

let d2 = cos(x)

xaxis min 0 max 2*pi dticks pi/2 format "pi"

key compact pos bl

d1 line color red marker triangle mdist 1 key "Sine"

d2 line color blue marker circle mdist 1 lstyle 2 key "Cosine"

end graph

Fig. 5.3 shows the result.
It is also possible to put a “key separator” line in between the “dn” lines create a key with multiple
columns. For example:

d1 line color red key "Sine"

key separator

d2 line color blue key "Cosine"

If you plot data from a data file, and the first row of the file contains column labels, then these labels
will be used automatically to construct the key. However, if you prefer to construct the key manually
instead by defining a key block, then you can override this behavior by making GLE ignore the row with
the labels using the “ignore” option of the “data” command. E.g., data "myfile.csv" ignore 1 (see
p. 25). Alternatively, you can accomplish the same by adding the command “key off” to the graph block
to disable the automatically generated key.

50 CHAPTER 5. THE KEY MODULE

Chapter 6

Programming Facilities

6.1 Expressions

Wherever GLE is expecting a number it can be replaced with an expression. For example

rline 3 2

and

rline 9/3 sqrt(4)

will produce the same result.
An expression in GLE is delimited by white space, so it may not contain any spaces - ‘rline 3*3 2’ is valid
but ‘rline 3 * 3 2’ will not work.
Or ‘let d2 = 3+sin(d1)’ will work and ‘let d2= 3 + sin(d1)’ won’t.
Expressions may contain numbers, arithmetic operators (+, -, *, /, ^ (to the power of)), relational
operators (>, <, =>, <=, =, <>) Boolean operators (and, or), variables and built-in functions.
When GLE is expecting a colour or marker name (like ‘green’ or ‘circle’) it can be given a string variable,
or an expression enclosed in braces.

6.2 Functions Inside Expressions

eval(str)
Evaluates the given string as if it was a GLE expression and returns the result. E.g., eval("3+4")
returns 7.

arg(i), arg$(i), nargs()
Provide access to the command line arguments that are passed to GLE. This is useful for gener-
ating multiple similar plots from a single script. arg(i) returns the i-the argument (as a number),
arg$(i) returns the i-the argument as a string, and nargs() returns the number of arguments. Only
arguments that come after the name of the GLE script are counted. For example, if GLE is run as:

gle -o graph-1.eps graph.gle "Title" 0.5

then nargs() returns 2, arg$(1) returns “Title”, and arg(2) returns 0.5.

The typical use of these functions is to create a script “graph.gle” as follows:

size 10 10

begin graph

title arg$(1)

data arg$(2)

d1 line color red

end graph

and then creating different graphs by running GLE multiple times:

51

52 CHAPTER 6. PROGRAMMING FACILITIES

fix 2
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

frac
-1 -3/4 -1/2 -1/4 0 1/4 1/2 3/4 1

pi
0 π/2 π 3π/2 2π

sci 0 10 expdigits 2 expsign
10−06 10−04 10−02 10+00 10+02 10+04 10+06

eng 3 append \Omega
1.00 µΩ 100 µΩ 10.0 mΩ 1.00 Ω 100 Ω 10.0 kΩ 1.00 MΩ

eng 3 10 num
1.00·10−6 100·10−6 10.0·10−3 1.00·100 100·100 10.0·103 1.00·106

eng 3 append g
0.00 g 500 g 1.00 kg 1.50 kg 2.00 kg

Figure 6.1: Examples of number formatting options.

gle -o beans.eps graph.gle "Beans" "beans.csv"

gle -o peas.eps graph.gle "Peas" "peas.csv"

This will create two graphs: “beans.eps” and “peas.eps”. The arg() functions can be used at all
places in the script where an expression is expected. They can even be used in place of GLE
commands in a graph block by means of the \expr() function. For example,

data "file.csv"

d\expr{arg(1)} line color red

in the graph block will allow one to draw different datasets from a single file on multiple graphs.
To do so, run:

gle -o d1.eps graph.gle 1

gle -o d2.eps graph.gle 2

dataxvalue(ds,i), datayvalue(ds,i), ndata(ds)
These functions can be used to retrieve the data values from a given dataset. They only work after
data has been loaded by means of a graph block (Ch. 4).

A dataset is specified with a dataset identifier ds (a string of the form “di”, with i an integer).
The function ‘ndata’ returns the number of points in the dataset, and the functions ‘dataxvalue’ and
‘datayvalue’ return the x and y values of point i, where i ranges from 1 to ndata(ds).

The following example shows how these functions can be used to compute the maximum of a dataset:

sub dmaxy ds$

local crmax = datayvalue(ds$,1)

for i = 2 to ndata(ds$)

crmax = max(crmax, datayvalue(ds$,i))

next i

return crmax

end sub

This subroutine together with other subroutines for computing the minimum, mean, area, etc. of
a dataset are defined in the include file ‘graphutil.gle’, which is distributed together with GLE.

format$(exp,format)
Returns a string representation of exp formatted as specified in format.

Basic formats:

• append s: appends the string s after the formatted number. This can be used to add a unit.

6.2. FUNCTIONS INSIDE EXPRESSIONS 53

• dec, hex [upper—lower], bin: format as decimal, hexadecimal (upper-case or lower-case), or
binary.

• fix places: format with places decimal places.

• percent places: format as (exp ·100)% with places decimal places.

• sci sig [e,E,10] [expdigits num] [expsign]: format in scientific notation with sig significant digits.
Use ‘e’, ‘E’, or ‘10’ as notation for the exponent. With the option expdigits the number of
digits in the exponent can be set and expsign forces a sign in the exponent.

• eng digits [e,E,10] [expdigits num] [expsign] [num]: format in engineering notation. The options
are similar to ‘sci’. If the option ‘num’ is given, then numeric notation is used instead of, e.g.,
µ, m, k, M.

• round sig: format a number with sig significant digits.

• frac: format the number as a fraction.

• pi: format the number as a fraction times π (E.g., xaxis labels of Fig. 4.12).

Options for all formats:

• nozeroes: remove unnecessary zeroes at the end of the number.

• sign: also include a sign for positive numbers.

• pad nb [left] [right]: pad the result with spaces from the left or right.

• prefix nb: prefix the number with zeroes so that nb digits are obtained.

• prepend s: prepends the string s before the formatted number.

• min val: use format for numbers ≥ val.

• max val: use format for numbers ≤ val.

Examples:

• format$(3.1415, “fix 2”) = 3.14

• format$(3756, “round 2”) = 3800

• format$(3756, “sci 2 10 expdigits 2”) = 3.8 · 1003

Several formats can be combined into one string: ”sci 2 10 min 1e2 fix 0” uses scientific notations
for numbers above 102 and decimal notation for smaller numbers. See Fig. 6.1 for more examples.

pagewidth(), pageheight()
These functions return the width and height of the output. These are the values set with the ‘size’
command.

pointx(), pointy()
These functions return the x and y values of a named point.

begin box add 0.1 name mybox

write "Hello"

end box

amove pointx(mybox.bc) pointy(mybox.bc)

rline 0 -2 arrow end

twidth(str), theight(str), tdepth(str)
These functions return the width, depth and height of a string, if it was printed in the current font
and size.

width(obj), height(obj)
These functions return the width and height of a named object.

xend(), yend()
These functions return the end point of the last thing drawn. This is of particular interest when
drawing text.

54 CHAPTER 6. PROGRAMMING FACILITIES

text abc

set color blue

text def

This would draw the def on top of the abc. To draw the def immediately following the abc simply
do the following (Note that absolute move is used, not relative move):

set just left

text abc

set color gray20

amove xend() yend()

text def

xg(), yg()
With these functions it is possible to move to a position on a graph using the graph’s axis units.
To draw a filled box on a graph, at position x=948, y=.004 measured on the graph axis:

begin graph

xaxis min 100 max 2000

yaxis min -.01 max .01

...

end graph

amove xg(948) yg(.004)

box 2 2 fill gray10

xpos(), ypos()
Returns the current x and y points.

See Appendix A.2 for an overview of all functions provided by GLE.

6.3 Using Variables

GLE has two types of variables, floating point and string. String variables always end with a dollar sign.
A string variable contains text like “Hello, this is text”, a floating point variable can only store numbers
like 1234.234.

name$ = "Joe"

height = 6.5 ! Height of person

shoe = 0.05 ! shoe adds to height of person

amove 1 1

box 0.2 height+shoe

write name$

6.4 String constants

String constants can be double quoted or single quoted. To include a double quote character in a double
quoted string it should be doubled. The same holds for a single quoted string. Backslash characters are
not interpreted in a special way by GLE’s parser. (They are, however, interpreted by the built-in TEX
system used in the ‘write’ command.) Here are some examples:

(11/2022) NOTE that including a double quote character as described below throws an
error. This is a known bug in GLE.

print "Double quoted string"

print ’Single quoted string’

print "Between ""double quotes"""

print "{\it hello}"

print "Three double quotes """""""

print """"

6.5. PROGRAMMING LOOPS 55

The result of these print commands is:

Double quoted string

Single quoted string

Between "double quotes"

{\it hello}

Three double quotes """

"

6.5 Programming Loops

The simple way to draw a 6 × 8 grid would be to use a whole mass of line commands:

amove 0 0

rline 0 8

amove 1 0

rline 1 8

...

amove 6 0

rline 6 8

this would be laborious to type in, and would become impossible to manage with several grids. By using
a simple loop this can be avoided:

for x = 0 to 6

amove x 0

rline x 8

next x

for y = 0 to 8

amove 0 y

rline 6 y

next y

For-next loops, and all other control constructs, can also be used among others inside graph and key
blocks. This is useful for drawing many similar functions (Fig. 4.6). Besides for-next loops, GLE also
supports while and until loops:

i = 0

while i <= 10

print "Value: " i

i = i + 1

next

i = 0

until i > 10

print "Value: " i

i = i + 1

next

6.6 If-then-else

GLE supports if-then-else statements as follows:

if a < 1 then print a "is smaller than 1"

else if a < 2 then print a "is smaller than 2 but larger than 1"

else if a < 3 then print a "is smaller than 3 but larger than 2"

else print a "is larger than 3"

to create blocks of code for the ‘then’ and ‘else’ branches, instead use:

56 CHAPTER 6. PROGRAMMING FACILITIES

if a < 1 then

print a "is smaller than 1"

...

else

...

end if

More complex conditions can be created with the logic connectives ‘and’, ‘or’, and ‘not’ (note the paren-
thesis around the logical expressions):

if (a >= 1) and (a <= 10) then print "a is between 1 and 10"

6.7 Subroutines

To draw lots of grids all of different dimensions a subroutine can be defined and then used again and
again:

sub grid nx ny

local x, y

begin origin

for x = 0 to nx

amove x 0

aline x ny

next x

for y = 0 to ny

amove 0 y

aline nx y

next y

end origin

end sub

amove 2 4

grid 6 8

amove 2 2

grid 9 5

Inside a subroutine, the keyword ‘local’ can be used to define local variables. E.g., ‘local x = 3’,
defines the local variable ‘x’ and assigns it the value 3. It is also possible to define several local variables
at once, as is shown in the ‘grid’ example above.
The keyword ‘return’ can be used to return a value from a subroutine. E.g.,

sub gaussian x mu sigma

return 1/(sigma*sqrt(2*pi))*exp(-((x-mu)^2)/(2*sigma^2))

end sub

The main GLE file will be much easier to manage if subroutine definitions are moved into a separate file:

include "griddef.gle"

amove 2 4

grid 2 4

amove 2 2

grid 9 5

More information about the “include” command can be found on page 15.

6.7.1 Default Arguments

Given the following subroutine definition:

sub mysub x y color$ fill$

default color "black"

default fill "clear"

print "Color: " color$

print "Fill: " fill$

end sub

6.8. FORWARD DECLARATIONS 57

the following calls are valid:

mysub 1 0

mysub 1 0 red

mysub 1 0 red green

mysub 1 0 fill blue

mysub 1 0 color red

mysub 1 0 color red fill blue

6.8 Forward Declarations

A forward declaration of a subroutine is possible with:

declare sub mysub x y

Forward declarations are required for declaring mutually recursive subroutines.

6.9 I/O Functions

The following I/O functions are available:

fopen name file [read|write]
Open the file “name” for reading or for writing. The resulting file handle is stored in variable “file”
and must be passed to all other I/O functions.

fclose file
Close the given file.

fread file x1 . . .

freadln file x1 . . .
Read entries from “file” into given arguments x1 . . .

fwrite file x1 . . .
Write given arguments to “file”.

fwriteln file x1 . . .
Write given arguments to “file” and start a new line.

fgetline file line$
Read an entire line from “file” and store it in the string “line$”.

ftokenizer file commentchar spacetokens singletokens
Sets up the parameters of the tokenizer that controls the reading of “file”. The commentchar
parameter specifies the characters that are to be interpreted as line comments. It is a string, but
each character of the string is assumed to be a separate comment character. The default is “!”. If
one would write “!%”, then both “!” and “%” would be comment indicators. The fread functions
skip everything after a comment character to the end of the line. The spacetokens string represents
the set of characters that are interpreted as spaces or delimiters. The default value is “ ,\t\r\n”, i.e.,
space, comma, tab, carriage return, and newline are delimiters by default. Finally, the singletokens
string identifies characters that should be returned as separate tokens, even if they are glued to
other tokens. For example, if “@” would be a single char token, then the string “me@myself.com”
would be returned in three tokens: “me”, “@”, and “myself.com”.

For example:

fopen "file.dat" f1 read

fopen "file.out" f2 write

until feof(f1)

fread f1 x y z

aline x y

rline x z

fwriteln f2 x*2 "y =" y

next

fclose f1

fclose f2

58 CHAPTER 6. PROGRAMMING FACILITIES

6.10 Device Dependent Control

A built in function which returns a string describing the device is available.
e.g. DEVICE$() = "HARDCOPY, PS,"

on the postscript driver.
This can be used to use particular fonts etc on appropriate devices. E.g.:

if pos(device$(),"PS,",1)>0 then

set font psncsb

end if

Chapter 7

Advanced Features

This chapter covers the advanced features of GLE.

7.1 Diagrams

7.1.1 Named Boxes and the Join Command

GLE can name objects using the “begin/end name” (p. 10), “begin/end box” (p. 9), and “begin/end
object” (p. 10) constructs, and using the “name” option supported by some drawing commands. The
name is always associated with the rectangular region on the figure that corresponds to the bounding
box of the object (the smallest rectangle that surrounds all points of the object). The following example
shows how to create a blue rectangle named “square” and a box with the text “Title” named “titlebox”.

amove 1 1

box 1 1 fill blue name square

amove 5 5

begin box add 0.1 name titlebox

write "Title"

end box

The “join” command (p. 15) can now be used to draw lines or curves (optinally with arrows) between
designated points of the named objects. The following example shows how to draw an arrow from
the top-right (“.tr”) point of the blue square to the bottom-centre point (“.bc”) of the object named
“titlebox”.

join square.tr -> titlebox.bc

The “->” in the join command indicates that the arrow should go from the first object towards the
second. The symbol “<-” is used to draw the arrow in the opposite direction. A bidirectional arrow is
obtained with “<->” and a line without an arrow is obtained with “-”. The join command can also create
Bezier curves instead of straight lines. See the command’s description on p. 15 for more information.

join square.tr -> titlebox.bc

join square.tr <- titlebox.bc

join square.tr <-> titlebox.bc

join square.tr - titlebox.bc

The named points (corners, centre points, ...) on each named object are indicated as defined in Table 7.1.
“.box” clipping is the default and can be omitted.
It is also possible to name an individual point (instead of an object). To do so, simply move there and
save that point as a named object.

amove 2 3; save apoint

join apoint - square

59

60 CHAPTER 7. ADVANCED FEATURES

Table 7.1: Justify options for the join command.
.tr Top right
.tc Top centre
.tl Top left
.bl Bottom left
.bc Bottom centre
.br Bottom right
.rc Right centre
.lc Left centre
.cc Centre
.v Vertical line
.h Horizontal line
.c Circle/ellipse clipping (for drawing lines to, e.g., a circle)
.box Box clipping

The functions “pointx” (abbreviated to “ptx”, see p. 53), “pointy” (abbreviated to “pty”), “width”, and
“height” (p. 53) apply to named points and objects. They retrieve the “x” respectively “y” coordinate
of a named point, and the width and height of a named object. For example:

print ptx(square.tr)

print pty(square.tr)

print width(square)

print height(square)

Complete Example

Below is a complete example that makes use of the constructs described above. The resulting figure is
shown in Fig. 7.1.

begin name line

amove 8 18

rline 0 -6

end name

begin name main

amove 9.5 6.5

ellipse 2 0.8

write "Main"

end name

amove 3 16

begin box name grv add 0.3 round 0.3 fill lightcyan

write "GRV"

end box

amove 12.5 16.5

begin box name cheese add 0.3 fill lightcyan

write "Cheese"

end box

amove 15.5 11.5

begin box name chv add 0.3 fill lightcyan

write "CHV"

end box

amove 3 10

begin box name goats add 0.3 fill lightcyan

write "Goats"

7.1. DIAGRAMS 61

Figure 7.1: Joining named points.

end box

amove 13 1.5

begin box name hi add 0.3 fill lightcyan

write "Hi there"

end box

join chv -> goats ! ".box" is default and can be omitted

join grv -> line.h ! ".h" means to join horizontally

join line.h <-> cheese.tl

join cheese.rc -> chv.tc curve 0 90 1.5 1

join main.c <- hi ! ".c" is used for circles

join main.c <- chv

join main.c <- goats

7.1.2 Object Blocks and Hierarchically Named Points

The “begin/end name” (p. 10) construct names the object that results from the drawing commands in
this block. The “begin/end object” (p. 10) is similar, but it does not actually draw the object. It rather
defines an object that can be drawn later by means of the “draw” command (p. 13). An object block
is therefore very similar to a subroutine. It actually works in the same way as a subroutine, but it is
‘executed’ by the “draw” command rather than by a regular subroutine call. An object block can also
have parameters. Here is an example of an object block that defines a house.

begin object house

! draw a house with a named door and window

set join round

! draw the roof

begin path stroke fill lightsalmon

amove 0 1.625

aline 1.25 2.5

aline 2.5 1.625

closepath

end path

! draw the brick wall

amove 0 0

box 2.5 1.625 fill cornsilk

62 CHAPTER 7. ADVANCED FEATURES

! draw the door

amove 1.5 0

box 0.75 1.375 fill burlywood name door

! draw the window

amove 0.25 0.625

box 1 0.75 fill skyblue name window

end object

To draw the house defined by the above block, one uses the following draw command. The first argument
of the command is the name of the object followed by a dot followed by a justify option (Table 7.1). The
justify option is used to position the object. In this case, the house is drawn such that its bottom-centre
point is horizontally in the middle of the figure and at a height of 1.5 cm.

amove pagewidth()/2 1.5

draw house.bc

The “draw” command names the object using the same name as the name of the object block by default.
An alternative name can be given using its “name” option. In this example, the resulting object on the
figure will be called “house”. Note that the object definition for the house also includes names for the
sub-objects “door” and “window”. These names can be accessed using the “dot” notation as follows:

print ptx(house.door.cc)

print pty(house.door.cc)

These so-called hierarchical object names can also be used to position the object. The following example
draws the house such that its door’s centre point is at position (5, 5).

amove 5 5

draw house.door.cc

By using the “draw” command inside an object’s definition, names can be arbitrary nested. For example,
if “door” would be defined as an object block that includes the name “handle”, and if the object block
defining “house” would include a draw command to draw the object “door”, then the global name of the
door’s handle becomes “house.door.handle”.
The hierarchical object names can be used to refer to points on the object. The following example shows
how these can be used with the pointx and pointy function to draw labels on the figure.

set just lc

amove pointx(house.rc)+0.5 pointy(house.door.cc)

begin name doorlabel add 0.05

write "house.door.cc"

end name

set just rc

amove pointx(house.lc)-0.5 pointy(house.window.cc)

begin name windowlabel add 0.05

write "house.window.cc"

end name

join windowlabel.rc -> house.window.cc

join doorlabel.lc -> house.door.cc

The resulting figure is shown in Fig. 7.2. The file “shape.gle” that is distributed with GLE contains
object block definitions for many useful shapes.

7.2 LATEX Interface

7.2.1 Example

GLE files can include arbitrary LATEX expressions using the LATEX interface. There are two ways to
include a LATEX expression. The first one is by using the ‘tex’ primitive. The second one is by using the
‘\tex{}’ macro in a string.

7.2. LATEX INTERFACE 63

Figure 7.2: Drawing objects and hierarchically named points.

set texlabels 1

begin graph

...

title "Plot of $f(x) =

\frac{x-\sqrt{5}}{(x-1)\cdot(x-4)}$"

xtitle "x"

ytitle "$y = f(x)$"

...

end graph

set just bc

amove xg(sqrt(5)) yg(2.5)

tex "$\sqrt{5}$" add 0.1 name sq5b

amove xg(sqrt(5)) yg(0); save sq50

join sq5b.bc -> sq50

-6

-4

-2

0

2

4

6

y
=

f
(x
)

0 1 2 3 4 5
x

Plot of f(x) = x−
√
5

(x−1)·(x−4)

√
5

LATEX expressions are drawn on top of all other graphics and cannot clipped (Sec. 7.3).
LATEX expressions respect the ‘just’ setting and, depending on the value of ‘texscale’, also the ‘hei’
setting (the font size). If ‘set texscale scale’ is used, then LATEX expressions are scaled to the value
of ‘hei’. If ‘set texscale none’ is used, then LATEX expressions are not scaled. As a result, the font
sizes in your graphics will be exactly the same as in your main document. To obtain different font sizes,
use the font size primitives provided by LATEX (e.g., \large, . . .). Finally, if ‘set texscale fixed’ is
used, then the default LATEX size that most closely matches the value of ‘hei’ is selected.

7.2.2 Using LaTeX Packages

If your LATEX expressions require special LATEX packages, these can be loaded using the texpreamble

block. E.g., put the following near the beginning of your GLE file:

begin texpreamble

\documentclass{llncs}

\usepackage{amsmath}

\usepackage{amssymb}

\DeclareMathSymbol{\R}{\mathbin}{AMSb}{"52}

end texpreamble

7.2.3 Using UTF-8 Encoding in GLE Scripts with LaTeX Expressions

If you save your .gle files in Unicode (UTF-8) encoding, then you can type accented characters (such
as é, ü, ž, . . .) directly into your GLE script. In order to also allow such encoded characters in LATEX
expressions, add the following ‘texpreamble’ to your GLE script:
size 4 4

begin texpreamble

\usepackage[utf8]{inputenc}

end texpreamble

amove 1 2; tex "éüž"

64 CHAPTER 7. ADVANCED FEATURES

7.2.4 Import a GLE Figure in a LaTeX Document

There are two methods for importing the output of a GLE file with TEX expressions in your LATEX
document. The most obvious one is by just importing the .eps/.pdf file generated by GLE with
\includegraphics. E.g., if you have a GLE script ‘sin.gle’ and you run ‘gle -d eps -d pdf sin.gle’
to produce the .eps/.pdf output, then you could include this in a LaTeX document as follows:

\documentclass{article}

\usepackage{graphics}

\begin{document}

\begin{figure}

\includegraphics{sin}

\caption{\label{sin}The sine function.}

\end{figure}

\end{document}

An alternative method is by using GLE’s command line option ‘-inc’. If this option is supplied, then
GLE will create besides the usual .eps or .pdf file also an .inc file. This .inc file can be imported in a
LATEX document as follows.

\input{myfile.inc}

The .inc file tells latex (or pdflatex) to include the .eps/.pdf output file created by GLE. It also
includes TEX draw commands for drawing the LATEX expressions on top of the GLE output. Note that
the .eps/.pdf file created by GLE does not include these if -inc is used (you can check this by viewing
it with GhostView).
To be able to include .inc files, the following must be included in the preamble of your LATEX document.

\usepackage{graphics}

\usepackage{color}

If you place your .gle files in a subdirectory of the directory where your LATEX document resides, the .inc
file created by GLE should include the path to this subdirectory in the ‘\includegraphics’ primitive
it uses for including the .eps/.pdf file generated by GLE. To add this path, use the ‘-texincprefix’
command line option of GLE. For example, if your GLE files are in a subdirectory called ‘plots’ then one
should run GLE as follows.

gle -texincprefix "plots/" -inc myfile.gle

GLE can color and rotate LATEX expressions (use ‘set color’ and ‘begin rotate’). Note however that
‘xdvi’ does not support these effects, so you will not be able to see them if you use this viewer. In the
final PostScript or PDF output, they will of course be displayed correctly.
The main advantage of using the -inc method is that the resulting file size will be smaller because the
LATEX fonts are not included in the .eps/.pdf file generated by GLE.

7.2.5 The .gle Directory

If your source includes LATEX expressions, then GLE will construct a subdirectory called ‘.gle’ for storing
temporary files (e.g., used for measuring the printed size of the LATEX expressions). After you are finished
you can safely delete the .gle directory. GLE will recreate it automatically if required.

7.3 Filling, Stroking and Clipping Paths

It is possible to set up arbitrary clipping regions. To do this draw a shape and make it into a path by
putting a begin path clip ... end path, around it. Then draw the things to be clipped by that region. To
clear a clipping path surround the whole section of GLE commands with begin clip ... end clip
Characters can be used to make up clipping paths, but only the PostScript fonts will currently work for
this purpose.

7.4. COLOUR 65

size 10 5

begin clip ! Save current clipping path

begin path clip stroke ! Define new clipping region

amove 2 2

box 3 3

amove 6 2

box 3 3

end path

amove 2 2

set hei 3

text Here is clipped text

end clip ! Restore original clipping path

7.4 Colour

Internally GLE treats color and fill identically, they are simply an intensity of red, green and blue. Each
of the predefined color names (yellow, grey20, orange, red) simply define the ratio of red, green and blue.
A sample of the predefined color names is included in Appendix A.7.

There are two ways to use variables to show color, one is for shades of grey:

for i = 0 to 10

box 3 .2 fill (i/10)

rmove 0 .2

next i

The other is for passing a color name as a variable:

sub stick c$

box .2 2 fill c$

end sub

stick "green"

A color can also be defined based on its RGB values with the rgb255 primitive.

mycolor$ = "rgb255(38,38,134)"

Remember a fill pattern completely obscures what is behind it, so the following command would produce
a box with a shadow:

amove 4 4

box 3 2 fill grey10

rmove -.1 .1

box 3 2 fill white

rmove .4 .4

text hellow

66 CHAPTER 7. ADVANCED FEATURES

7.5 GLE’s Configuration File

GLE reads two configuration files during initialization. The first configuration file is the file “glerc”
located in the root of your GLE installation. This location is usually referred to as $GLE TOP. To
find out where your $GLE TOP is, run “gle -info”. The second configuration file is the file “.glerc”
located in your home directory (Unix and Mac OS/X only). The commands in this second file override
the commands in $GLE TOP/glerc.
The configuration files can be used to set various options, such as the paper size and margins.
To set the paper size and margins, add the following block to the configuration file.

begin config paper

size = letterpaper

margins = 2.54 2.54 2.54 2.54

end config

The supported paper sizes are listed with the description of the “papersize” command on page 16.
The configuration file can also be used to override default locations of external tools such as GhostScript
and LaTeX.

begin config tools

ghostscript = $HOME/bin/gs

pdflatex = /usr/bin/pdflatex

latex = /usr/bin/latex

dvips = /usr/bin/dvips

dvips_options = "-j0"

end config

Note that GLE expands environment variables in the tool locations. If I’m john, then GLE will search
for GhostScript in /home/john/bin/gs in the above example. It is also possible to specify additional
command line options to be passed to the tools by means of ghostscript_options, pdflatex_options,
latex_options, and dvips_options. In the above example, the option “-j0” will be passed to dvips.
As a result, it will not subset fonts.

Chapter 8

QGLE: GLE’s Graphical User
Interface

QGLE is the graphical user interface (GUI) to GLE. A screenshot of QGLE with some of its dialogs
appears in Fig. 8.1.
The current GUI contains a preview window that can receive messages from GLE and display the resulting
EPS file. In addition, it can open GLE and EPS files directly (using Ghostscript and GLE). It has the
capability to add and edit simple objects, such as, lines, circles, arcs (snapping to a grid if required),
and complex object blocks (defined with begin/end object). It can also alter various properties of the
objects, such as, line width, and color. The perpendicular line and tangential line commands can be used
to produce a line starting perpendicular or tangential to an existing object. OSnap can be used for the
end point of a line.

When drawing objects, hit the escape key to cancel. The pointer tool can be used to select objects and
they can be deleted using the ’del’ key or moved/scaled. Shift can be used to select multiple objects.

Keyboard shortcuts include:
F1 Open the GLE manual
F3 Toggle object snap
F6 Toggle coordinate display
F7 Toggle grid visibility
F8 Toggle orthographic snap
F9 Toggle grid snap
F10 Toggle polar snap
’-’ Zoom in
’=’ Zoom out

67

68 CHAPTER 8. QGLE: GLE’S GRAPHICAL USER INTERFACE

Figure 8.1: A screenshot of QGLE.

Chapter 9

Surface and Contour Plots

9.1 Surface Primitives

9.1.1 Overview

Surface plots three dimensional data using a wire frame with hidden line removal.
The simplist surface code would look like this.

begin surface

data "myfile.z" 5 5

end surface

The surface block can contain the following commands:
size x y
cube [off] [xlen v] [ylen v] [zlen v] [nofront] [lstyle l] [color c]
data myfile.z [xsample n1] [ysample n2] [sample n3] [nx n1] [ny n2]
harray n
xlines — ylines [off]
xaxis — yaxis — zaxis [min v] [max v] [step v] [color c] [lstyle l] [hei v] [off]
xtitle — ytitle — ztitle ”title” [dist v] [color c] [hei v]
title ”main title” [dist v] [color c] [hei v]
rotate θ ϕ x
view x y p
top — underneath [off] [lstyle n] [color c]
back [zstep v] [ystep v] [lstyle l] [color c] [nohidden]
base [xstep v] [ystep v] [lstyle l] [color c] [nohidden]
right [zstep v] [xstep v] [lstyle l] [color c] [nohidden]
skirt on
points myfile.dat
marker circle [hei v] [color c]
droplines — riselines [color c] [lstyle n]
zclip [min v1] [max v2]

9.1.2 Surface Commands

size x y
Specifies the size in cm to draw the surface. The 3d cube will fit inside this box. The default is
18cm x 18cm e.g. size 10 10

cube [off] [xlen v] [ylen v] [zlen v] [nofront] [lstyle l] [COLOR c]
Surface is drawing a 3d cube.

off Stops GLE from drawing the cube.
xlen The length of the cubes x dimension in cm.
nofront Removes the front three lines of the cube.
lstyle Sets the line style to use drawing the cube.
color Sets the color of lines to use drawing the cube.

69

70 CHAPTER 9. SURFACE AND CONTOUR PLOTS

begin surface

size 7 7

data "jack.z"

cube zlen 13

top color orange

underneath color red

end surface

data myfile.z [xsample n1] [ysample n2] [sample n3] [nx n1] [ny n2]
Loads a file of Z values in. The NX and NY dimensions are optional, normally the dimensions of
the data will be defined on the first line of the data file. e.g.

! nx 10 ny 20 xmin 1 xmax 10 ymin 1 ymax 20

1 2 42 4 5 2 31 4 3 2 4

1 2 42 4 5 2 31 4 3 2 4 etc...

y1,x1, y1,x2 ... y1,xn

y2,x1, y2,x2 ... y2,xn

.

.

.

yn,x1, yn,x2 ... yn,xn

Data files can be created using LETZ or FITZ. LETZ will create a data file from an x,y function.
FITZ will create a data file from a list of x,y,z data points.

xsample Tells surface to only read every n’th data point from
the data file. This speeds things up while you are
messing around.

ysample Tells surface to only read every n’th line from the
data file.

sample Sets both xsample and ysample

(see also POINTS)

begin surface

size 5 5

xtitle "X-axis"

ytitle "Y-axis"

data "surf1.z"

end surface

harray n
The hidden line removal is accomplished with the help of an array of heights which record the
current horizon, the quality of the output is proportional to the width of this array. (also the speed
of output)

To get good quality you may want to increase this from the default of about 900 to 2 or 3 thousand.
e.g. harray 2000

xlines off
Stops SURF from drawing lines of constant X.

9.1. SURFACE PRIMITIVES 71

ylines off
Stops SURF from drawing lines of constant Y.

xaxis [min v] [max v] [step v] [color c] [lstyle l] [hei v] [off]

zaxis [min v] [max v] [step v] [color c] [lstyle l] [hei v] [off]

yaxis [min v] [max v] [step v] [color c] [lstyle l] [hei v] [off]
min,max Set the range used for labelling the axis.
step The distance between labels on the axis.
color The color of the axis ticks and labels.
lstyle The line style used for drawing the ticks.
ticklen The length of the ticks.
hei The height of text used for labelling.
off Stops GLE from drawing the axis.

begin surface

size 5 5

data "surf1.z"

zaxis min -1 max 3

base xstep 0.5 ystep 0.5

back ystep 1 zstep 1

right xstep 0.5 zstep 0.5 lstyle 2

xtitle "X-axis" hei 0.3

ytitle "Y-axis" hei 0.3

end surface

xtitle ”x title” [dist v] [color c] [hei v]

ytitle ”y title” [dist v] [color c] [hei v]

ztitle ”z title” [dist v] [color c] [hei v]
dist Moves the title further away from the axis.
color Sets the color of the title.
hei Sets the hei in cm of the text used for the title.

title ”main title” [dist v] [color c] [hei v]
dist Moves the title further away from the axis.
color Sets the color of the title.
hei Sets the hei in cm of the text used for the title.

rotate θ ϕ x rotate 10 20 30

Imagine the unit cube is sitting on the front of your terminal screen, x along the bottom, y up the
left hand side, and z coming towards you.

The first number (10) rotates the cube along the xaxis, ie hold the right hand side of the cube and
rotate your hand clockwise 10 degrees.

The second number (20) rotates the cube along the yaxis, ie hold the top of the cube and rotate it
20 degrees clockwise.

The third number is currently ignored.

The default setting is 60 50 0.

view x y p
Sets the perspective, this is where the cube gets smaller as the lines disappear towards infinity.

x and y are the position of infinity on your screen. p is the degree of perspective, 0 = no perspective
and with 1 the back edge of the box will be touching infinitiy. Good values are between 0 and 0.6

72 CHAPTER 9. SURFACE AND CONTOUR PLOTS

begin surface

size 5 5

data "surf1.z"

zaxis min -1

rotate 85 85 0

view 0 5 0.7

end surface

top [off] [lstyle n] [color c]
Sets the features of the top of the surface. By default the top is on.

(see also UNDERNEATH, XLINES, YLINES)

underneath [off] [lstyle n] [color c]
Sets the features of the under side of the surface. By default the underneath is off.

(see also TOP, XLINES, YLINES)

back [zstep v] [ystep v] [lstyle l] [color c] [nohidden]
Draws a grid on the back face of the cube.

By default hidden lines are removed but NOHIDDEN will stop this from happenning.

base [xstep v] [ystep v] [lstyle l] [color c] [nohidden]
Draws a grid on the base of the cube.

By default hidden lines are removed but NOHIDDEN will stop this from happenning.

right [zstep v] [xstep v] [lstyle l] [color c] [nohidden]
Draws a grid on the right face of the cube.

By default hidden lines are removed but NOHIDDEN will stop this from happenning.

skirt on
Draws a skirt from the edge of the surface to ZMIN.
begin surface

size 5 5

data "surf1.z"

zaxis min -1 max 3

xtitle "X-axis"

ytitle "Y-axis"

ztitle "Z-axis"

points "surf3.dat"

riselines lstyle 2

marker fcircle

skirt on

rotate 60 35 0

view 2.5 3 0.6

end surface

points myfile.dat
Reads in a data file which must have 3 columns (x,y,z)

This is then used for plotting markers and rise and drop lines.

marker circle [hei v] [color c]
Draws markers at the co-ordinates read from the POINTS file.

droplines [color c] [lstylen]
Draws lines from the co-ordinates read from the POINTS file down to zmin.

riselines [color c] [lstyle n]
Draws lines from the co-ordinates read from the POINTS file up to zmax.

9.2. LETZ 73

zclip [min v1] [max v2]
ZCLIP goes through the Z array and sets any Z value smaller than MIN to v1 and sets any value
greater than MAX to v2.

9.2 Letz

LETZ generates a data file of z values given an expression in terms of x and y.

begin letz

data "jack.z"

z = x+sin(y^2)/pi+10.22

x from 0 to 30 step 1

y from 0 to 20 step 1

end letz

The file jack.z now contains the required data. The resulting file can be used to generate surface plots
with the begin/end surface block discussed in the previous section.

9.3 Fitz

FITZ fits smooth curves based on a set of 3D data points. E.g., given some data points (note that each
line has three values: an x, y, and z coordinate):

x y z

---- data file testf.dat -----

1 1 1

1 2 1

2 2 1

2 1 1

1.5 1.5 2

Fitz creates a ”.z” file that can be used in a surface block, a colormap or contour plot. The following
example illustrates this.
begin fitz

data "fitz.dat"

x from 0 to 5 step 0.2

y from 0 to 5 step 0.2

ncontour 6

end fitz

begin surface

size 7 7

data "fitz.z"

top color blue

xaxis min 0 max 5 step 1

yaxis min 0 max 5 step 1

points "fitz.dat"

droplines lstyle 1

marker circle

view 2.5 3 0.3

harray 5000

end surface

9.4 Contour

The contour block produces contour lines of a function z = f(x, y).
The function f(x, y) is given by a .z file. The .z file format is discussed on page 70. Recall that a .z file
can be created from sample data points, that is (x, y, z) tuples, with the fitz block (Section 9.3), or from
an implicit definition of f(x, y) with a letz block (Section 9.2).

74 CHAPTER 9. SURFACE AND CONTOUR PLOTS

include "contour.gle"

begin contour

data "saddle.z"

values 0.5 1 1.5 2 3

end contour

begin graph

title "Saddle Plot Contour Lines"

data "saddle-cdata.dat"

d1 line color blue

end graph

contour_labels "saddle-clabels.dat" "fix 1"

0

5

10

15

20

0 2 4 6 8 10

Saddle Plot Contour Lines

1.51.5 1.01.0

0.50.5

2.02.03.03.0

0.50.5

1.01.0

0.50.5
1.01.01.51.5 2.02.0

1.51.5
2.02.0

3.03.0

The contour block can contain the following commands:

data file$
Specifies the name of the .z file.

values v1, . . . , vn
Specifies the z-values to contour at.

values from v1 to vn step s
Specifies the z-values to contour at by means of from/to/step.

smooth integer
Specifies the smoothing parameter.

The contour block creates the files “data-clabels.dat” and “data-cdata.dat” with the prefix “data” the
name of the .z file. The file “data-clabels.dat” contains information for drawing labels on the contour
plot. This is done by the subroutine contour labels defined in the library “contour.gle” in the example
above. The file “data-cdata.dat” contains the (x, y) values of the contour lines. This file can be used as
input to a graph block and plotted with the “d1 line” command as shown in the example above.

9.5 Color Maps

Color maps plot a function z = f(x, y) by mapping z to a color range. The following example combines
a color map with a contour plot.

begin contour

data "volcano.z"

values from 130 to 190 step 10

end contour

begin graph

title "Auckland’s Maunga Whau Volcano"

data "volcano-cdata.dat"

xaxis min 0 max 20

yaxis min 0 max 20

d1 line color black

colormap "volcano.z" 100 100

end graph
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

Auckland’s Maunga Whau Volcano

The options to the colormap command are as follows:

colormap fct pixels-x pixels-y [color] [invert] [zmin z1] [zmax z2] [palette pal]

• fct specifies the function to map. This can either be the name of a .z file, or it can be a function
definition f(x, y).

9.5. COLOR MAPS 75

• pixels-x, pixels-x specify the dimension of the color map. A color map is a stored as a bitmap
image and (pixels-x, pixels-x) are the resolution of this bitmap. A larger resolution yields more
detail, but at the cost of longer computation time and a larger file size.

• color is an optional argument and indicates that the color map should be drawn in color (as
opposed to grayscale).

• invert is an optional argument that inverts the color map. That is, large function values will
be drawn in black and small function values in white.

• zmin, zmax are optional arguments that specify the range of the function.

• palette is an optional argument that specifies the palette to use. A palette is a subroutine that
maps z values to colors. A number of example palette subroutines are included in the library
“color.gle”.

The following example is a color map of a two dimensional Gaussian.

include "color.gle"

sub gauss x y

s = 0.75

return exp(-(x^2+y^2)/(2*s^2))

end sub

begin graph

title "2D Gaussian"

xaxis min -2 max 2

yaxis min -2 max 2

colormap gauss(x,y) 200 200 zmin 0 zmax 1 color

end graph

amove xg(xgmax)+0.3 yg(ygmin)

color_range_vertical zmin 0 zmax 1 zstep 0.1 format "fix 1"
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

2D Gaussian

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

76 CHAPTER 9. SURFACE AND CONTOUR PLOTS

Chapter 10

GLE Utilities

10.1 Fitls

The FITLS utility allows an equation with n unknown constants to be fitted to experimental data.
For example to fit a simple least squares regression line to a set of points you would give FITLS the
equation: a*x+b

FITLS would then solve the equation to find the best values for the constants a and b.
FITLS can work with non linear equations, it will ask for initial values for the parameters so that a
solution around those initial guesses will be found.
FITLS writes out a GLE file containing commands to draw the data points and the equation it has fitted
to them.
Here is a sample FITLS session:

$ fitls

Input data file (x and y columns optional) [test.dat,1,2] ? fitls.dat

Loading data from file, fitls.dat, xcolumn=1, ycolumn=2

Valid operators: +, -, *, /, ^ (power)

Valid functions:

abs(), atn(), cos(), exp(), fix(), int()

log(), log10(), not(), rnd(), sgn(), sin()

sqr(), sqrt(), tan()

Enter a function of ’x’ using constants ’a’...’z’

e.g. a + b*x (standard linear least squares fit)

sin(x)*a+b

a + b*x + c*x^2 + d*x^3

log(a*x)+(b+x)*c+a

Equation ? sin(a*x)*b+c*x^2+d

Output file name to write gle file [fitls.gle] ?

Precision of fit required, [1e-4] ?

Initial value for constant a [1.0] ?

Initial value for constant b [1.0] ?

Initial value for constant c [1.0] ?

Initial value for constant d [1.0] ?

0 evaluations, 1 1 1 1 , fit = 1355.36

20 evaluations, 1.97005 1 1 1 , fit = 1281.95

40 evaluations, 1.97005 10.228 0.151285 1 , fit = 54.7694

60 evaluations, 2.01053 10.228 0.151285 1.06365 , fit = 54.1771

.

.

.

440 evaluations, -0.640525 -2.81525 0.13997 1.13871 , fit = 0.940192

460 evaluations, -0.638055 -2.82934 0.140971 1.10502 , fit = 0.93842

77

78 CHAPTER 10. GLE UTILITIES

480 evaluations, -0.63808 -2.82357 0.140993 1.10452 , fit = 0.938389

a = -0.638262 b = -2.81719 c = 0.140722 d = 1.11256

10 Iterations, sum of squares divided by n = 0.938389

y = sin(-0.638262*x)*-2.81719+0.140722*x^2+1.11256

10.2 Manip

Manip is a data manipulation package. It reads in a text file of numbers and displays them like a
spreadsheet. You can then do simple operations on the columns and write them out in any format you
like.

10.2.1 Usage

MANIP infile.dat -recover -step -commands c.log -single -size x y

–recover
Manip logs everything you type to a file called MANIP_.J1 When you use the -RECOVER option on
the manip command it then reads keys from that file as if they were typed at the keyboard.

This will restore you to the point just before your pc crashed. The last three journal files are stored
(.j1 .j2 .j3) simply copy the one you want to (.j1) to use it.

–step
Used with recover, press a space for each key you want to read from the journal file, press any other
key to stop reading the journal.

–commands filename.man
This reads the commands in filename.man as if they were typed at the keyboard.

–single
This makes MANIP use single precision arithmetic and doesn’t store strings at all, this enables three
times as much data in the same amount of memory

–size x y
Sets the initial size of the spreadsheet. Use this with large datasets as it prevents the heap from
becoming fragmented and thus lets you use much larger datasets.

Range

Most manip commands accept a range as one or more of there parameters. A range is a rectangular
section of your spreadsheet. A range can ether start with a ’c’ or an ’r’ and this will affect how the
command operates.
If your spreadsheet has 5 columns and 10 rows then.

10.2. MANIP 79

c1 == c1c1r1r10 == 1,1 1,2 1,3 1,4 1,5 1,6 ...

r1 == r1r1c1c5 == 1,1 2,1 3,1 4,1 5,1

c1c2 ==c1c2r1r10 == 1,1 2,1 1,2 2,2 3,1 3,2 ...

r1r2c3=r1r2c3c5 == 3,1 3,2 4,1 4,2 5,1 5,2

Arrows

The arrow keys normally move the data cursor, however if you are half way through typing a command
then, the left and right arrow keys allow you to edit the command. Use the PAGE-UP and PAGE-DOWN
keys to recall your last command.

SHIFT arrow keys will jump 7 cells at a time for fast movement.

Further help is available on the following toppics via the HELP command e.g. ”HELP COPY”

10.2.2 Manip Primitives (a summary)

@mycmds
Arrows
BLANK
CLEAR
CLOSE
COPY [range] [range] IF [exp]
DATA [range]
DELETE [range] IF [exp]
EXIT filename [range] –TAB –SPACE –COMMA
FIT c3
Functions
GENERATE [pattern] [destination]
GOTO x y
INSERT [Cn] or [Rn]
LOAD filename [range] –0
LOAD filename [range]
LOGGING mycmds.man
MOVE [range] [range] IF [exp]
NEW
PARSUM [range1] [range2]
PROP [range] [range]
QUIT
Recover (recovering from power failure or crash)
SAVE filename [range] –TAB –SPACE –COMMA
SET SIZE ncols nrows
SET BETWEEN ” ”
SET COLTYPE
SET COLWIDTH
SET NCOL n
SET DPOINTS n
SET DIGITS n
SET WIDTH n
SHELL
SORT [range] on [exp]
SUM [range]
SWAP CnCn — RnRn

10.2.3 Manip Primitives (in detail)

COPY [range1] [range2] if [exp]
For copying a section to another section. They do not have to be the same shape. The pointers to
both rangers are increased even if the number is not coppied e.g.

80 CHAPTER 10. GLE UTILITIES

"% COPY r4r2 r1r2"

"% COPY c1c3r6r100 c6c8 if c1<c2"

"% COPY C1 C2 IF C1<4"

c1 c2

1 1

2 2

5 -

3 3

9 -

DELETE [range] IF [exp]
For deleteing entire rows or columns. e.g.

"% DELETE c1c3 IF r1>3.and.r2=0

"% DELETE r1"

Numbers are shuffled in from the right to take the place of the deleted range.

DATA [range]
Data entry mode is useful for entering data. After typing in "% DATA c1c3" or "% DATA C2" you
can then enter data and pressing ¡cr¿ will move you to the next valid data position. In this mode
text or numbers can be entered. Press ESC to get back to command mode.

FIT c3
"FIT C3" will fit a least squares regression line to the data in columns c3 and c4 (x values taken
from c3) and print out the results.

EXIT
EXIT saves the data in your input file spec and exits to DOS. You can optionally specify an output
file as well. eg. "% EXIT myfile.dat"

The command "EXIT myfile.dat c3c5r1r3" will write out that range of numbers to the file.

By default manip will write columns separated by spaces.

The command "EXIT myfile.dat -TAB" will put a single tab between each column of numbers
and "EXIT myfile.dat -COMMA" will put a comma and a space between each number. (these two
options are useful if your data file is very big and you don’t want to waste diskspace with the space
characters.) Note: The settings stay in effect for future saves and exits.

You can make it line up the columns on the decimal point by typing in the command.
"SET DPOINTS 3"

You change the width of each column or completely remove the spaces between columns with the
command. "SET WIDTH 10" (or set width 0)

You can change the number of significant digits displayed with the command "SET DIGITS 4"

SAVE myfile.dat
Saves all or part of your data. The command "SAVE myfile.dat c3c5r1r3" will write out that
range of numbers to the file.

By default manip will write columns separated by spaces.

The command "SAVE myfile.dat -TAB" will put a single tab between each column of numbers
and "SAVE myfile.dat -COMMA" will put a comma and a space between each number. (these two
options are useful if your data file is very big and you don’t want to waste diskspace with the space
characters).

Further options are the same like EXIT

GOTO
For moving the cursor directly to a point in your array. e.g. "% GOTO x y"

CLEAR
"% CLEAR C2C3" Clears the given range of all values

10.2. MANIP 81

BLANK
"% BLANK C2C3" Clears the given range of all values

NEW
Clears the spread sheet of all data and frees memory.

INSERT
Inserts a new column or row and shifts all others over. e.g."% INSERT c5" or "% INSERT r2".

LOAD
Load data into columns. eg. "% LOAD filename" loads all data into corresponding columns.
"% LOAD filename c3" load first column of data into c3 etc.

"LOAD myfile.dat c3 -LIST" This commmand will load the the data into a single column or
range (even if it is several columns wide in the data file)

MOVE [range1] [range2] if [exp]
For copying a section to another section. They do not have to be the same shape. The pointer to
the destination is only increased if the line or column is coppied e.g.

"% MOVE c1 c2c3"

"% MOVE r4r2 r1r2"

"% MOVE c1c3r6r100 c6c8 if c1<c2"

"% MOVE C1 C2 IF C1<4"

c1 c2

1 1

2 2

5 3

3 -

9 -

(See COPY command)

SORT [range] ON [exp]
Sort entire rows of the data based on the data in a particular column. e.g.

"% SORT c8 on c9"

"% SORT c1c8 on -c8"

"% SORT c1c3 on c2 " !for sorting strings

This command works out how to sort the column (or exp) specified in the ON part of the command.
It then does that operation to the range specified. e.g. "SORT C1 ON C1" will sort column one.

Use the additional qualifier -STRINGS if you want to sort a column with strings in it. e.g.
"sort c1 on c2 -strings"

SWAP
Swap over two columns or rows. e.g.

"% SWAP c1c2"

"% SWAP r3r1"

SET SIZE ncols nrows
"SIZE 3 4" Truncates the spreadsheet to 3 columns and 4 rows. This also sets the values to use
for default ranges.

SET BETWEEN ” ”
"SET BETWEEN "##" Defines the string to be printed between each column of numbers when written
to a file. This is normally set to a single space.

82 CHAPTER 10. GLE UTILITIES

SET COLWIDTH
Set the width of each column when displayed. e.g. "% SET COLWIDTH 12"

SET COLTYPE [n] DECIMAL — EXP — BOTH — DPOINTS n
This commands allows all or individual columns to be set to different output types. If colnumber
is missing then that setting is applied to all columns.

SET COLTYPE Ccolnumber TYPE Where TYPE is one of:

DECIMAL produces 123.456

EXP produces 1.23456e02

BOTH produces whichever is more suitable

DPOINTS n produces a fixed number of decimal places.

e.g.

SET COLTYPE c2 DECIMAL

SET COLTYPE c1 EXP

SET COLTYPE c3 DPOINTS 4

Would print out: 1.2e02 1.2 1.2000

SET COLTYPE EXP (column number missed out)

Would print out: 1.2e02 1.2e02 1.2e02

SET NCOL n
Set the number of columns to display. e.g."% SET NCOL 3"

SET DPOINTS n
Sets the number of decimal places to print. This is used for producing columns which line up on
the decimal point. e.g. with DPOINTS 3.

2.2 -> 2.200

234 -> 234.000

(See also SET COLTYPE)

SET DIGITS n
Sets the number of significat digits to be displayed, e.g. with DIGITS 3.

123456 becomes 123000

0.12345 becomes 0.123

SET WIDTH n
Sets the width of padding to use for the columns when they are written to a file. The columns
usually one space wider than this setting as the BETWEEN string is usually set to one space by
default.

LOGGING
For creating command files. e.g.

"% LOG sin.man"

"% c2=sin(c1)

"% c3=c2+2

"% close"

Then type in "@sin" to execute these commands.

PROPAGATE [source] [destination]
This command has the same format as move. The difference is that the source is coppied as many
times as possible to fill up the destination. e.g. "% PROP c1r1r7 c2"

SUM [range]
Adds up all the numbers in a range and displays the total and average. e.g. "% SUM C1C3"

10.2. MANIP 83

PARSUM [range1] [range2]
Adds up one coloumn, putting the partial sum’s into another coloumn. e.g. 1,2,3,4 becomes
1,3,6,10.

GENERATE [pattern] [destination]
For generating a patter of data e.g. 1 1 2 2 5 5 1 1 2 2 5 5 etc.

"% GEN 2(1,2,5)30 c4" !1 1 2 2 5 5 repeated 30 times

"% GEN (1:100:5)5 c1" !1 to 100 step 5, 5 times

"% GEN (1,2,*,3:5)5 c1" !missing values included

Functions
Calculations can be performed on rows or columns. eg "% C1=C2*3+R" where ”R” stands for row-
number and C1 and C2 are columns. They can also be performed on ROWS. eg

r1=sin(r2)+log10(c)

c1 = cell(c+1,r)+cell(c+2,r)

cell(1,3) = 33.3

3+4*COS(PI/180)^(3+1/30)+C1+R

Valid operators and functions:

, + − ^ ∗ / <=
>= <> < > =)AND()OR(

ABS(ATN(COS(EXP(FIX(INT(LOG(

LOG10(SGN(SIN(SQR(TAN(NOT(RND(

SQRT(.NE. .EQ. .LT. .GT. .LE. .GE.

.NOT. .AND. .OR.

QUIT
Abandon file.

SHELL
Gives access to DOS.

84 CHAPTER 10. GLE UTILITIES

Appendix A

Tables

A.1 Markers

triangle

wtriangle

ftriangle

square

wsquare

fsquare

circle

wcircle

fcircle

diamond

wdiamond

fdiamond

cross

plus

minus

asterisk

odot

ominus

oplus

otimes

star

star2

star3

star4

flower

club

heart

spade

dag

ddag

snake

dot

handpen

letter

phone

plane

scircle

ssquare

trianglez

diamondz

A.2 Functions and Variables

GLE has the following built in functions and variables in the following categories

A.2.1 General Program

Function name Returns
arg(i) i-th command line argument
arg$(i) i-th command line argument
dataxvalue(ds,i) x-value of i-th point in ds (p. 52)
datayvalue(ds,i) y-value of i-th point in ds (p. 52)
date$() current date e.g. “Tue Apr 09 1991”
device$() available devices e.g. “HARDCOPY, PS”
getenv(str) returns environment variable “str”
eval(str) evaluates given GLE expression
\expr(exp) substitute result of evaluating “exp”
file$() returns GLE file name (without extension)
height(name$) the height of the object name$
nargs() number of command line arguments
ndata(ds) number of points in data set ds (p. 52)
ndatasets() number of available data sets
pageheight() the height of the page (from size command)
pagewidth() the width of the page (from size command)
path$() returns the directory where the script is located
pointx(pt) the x value of named point pt

85

86 APPENDIX A. TABLES

pointy(pt) the y value of named point pt
ptx(pt) the x value of named point pt (abbreviation for pointx)
pty(pt) the y value of named point pt (abbreviation for pointy)
rgb(red,green,blue) create color given RGB values
rgba(red,green,blue,alpha) create color given RGB and alpha values
rgb255(red,green,blue) create color given RGB values
rgba255(red,green,blue,alpha) create color given RGB and alpha values
tdepth(str$) the depth of str$ assuming current the font, size
theight(str$) the height of str$ assuming current font, size
twidth(str$) the width of str$ assuming current font, size
time$() current time e.g. “11:44:27”
width(name$) the width of the object name$
xend() the x end point of a text string when drawn
xpos() the current x point
yend() the y end point of a text string when drawn
ypos() the current y point

A.2.2 String or Text Manipulation

Function Name Returns
num$(exp) string representation of exp
num1$(exp) as above but with no spaces
pos(str1$,str2$,exp) position of str2$ in str1$ from exp

right$(str$,exp) rest of str$ starting at exp
seg$(str$,exp1,exp2) str$ from exp1 to exp2

val(str$) value of the string str$
left$(str$,exp) left exp characters of str$
len(str$) the length of str$
format$(exp,format) format exp as specified in format (p. 52)

A.2.3 Logical Operators

Operator Meaning
= equals (same as assignment)
<> not equals (in GLE ! is the comment character)
< less than
> greater than
<= less than or equal
>= greater than or equal
and logical and between two expressions e.g. (x < 1) and (x > 10)

or logical or between two expressions
not(exp) logical not of exp

A.2.4 Mathematical Operators, Constants, and Functions

GLE provides the following mathematical operators, functions, and constants. All angles are in radians.
The constant values have 16 digits of precision within GLE. The constants and special functions are from
the boost C++ libraries or the C++ standard math libraries.

A.2. FUNCTIONS AND VARIABLES 87

Operator Meaning
= assignment (same as logical equals)
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus or remainder
++ increment a++ ≡ a = a + 1

-- decrement a-- ≡ a = a - 1

+= addition assignment a+=3 ≡ a = a + 3

-= subtraction assignment a-=3 ≡ a = a - 3

= multiplication assignment a=3 ≡ a = a * 3

/= division assignment a/=3 ≡ a = a / 3

Constants Value
pi π = 3.14159265358979323846
two pi 2π
root pi

√
π

half pi π/2

root two
√
2

root three
√
3

e e1

Function Returns
abs(x) absolute value of x
acos(x) inverse cosine of x
acosh(x) inverse hyperbolic cosine of x
acot(x) 1/atan(x)
acoth(x) 1/atanh(x)
acsc(x) 1/asin(x)
acsch(x) 1/asinh(x)
asec(x) 1/acos(x)
asech(x) 1/acosh(x)
asin(x) inverse sine of x
asinh(x) inverse hyperbolic sine of x
atan(x) inverse tangent of x
atanh(x) inverse hyperbolic tangent of x
atn(x) same as atan(x) (deprecated, kept for backward compatibility)
cos(x) cosine of x
cosh(x) hyperbolic cosine of x
cot(x) 1/tan(x)
coth(x) 1/tanh(x)
csc(x) 1/sin(x)
csch(x) 1/sinh(x)
erf(x) Gaussian error function of x
exp(x) ex

fix(x) x rounded towards 0
int(x) integer part of x
log(x) log to base e of x
log10(x) log to base 10 of x
max(x,y) the maximum value of x or y
min(x,y) the minimum value of x or y
rnd(x) random number between 0 and x
sdiv(x,y) return x/y or 0 if y = 0

88 APPENDIX A. TABLES

sec(x) 1/cos(x)
sech(x) 1/cosh(x)
sgn(x) returns 1 if x is positive, -1 if x is negative
sin(x) sine of x
sinh(x) hyperbolic sine of x
sqr(x) x squared
sqrt(x) square root of x
tan(x) tangent of x
tanh(x) hyperbolic tangent of x
todeg(x) convert from radians to degrees
torad(x) convert from degrees to radians
associated laguerre(n,x) nth order associated Laguerre polynomial of x
spherical harmonic(n,m,θ,ϕ) real valued spherical harmonic, θ polar angle [0, π], ϕ azimuthal angle [0, 2π].
factorial(n) n!
double factorial(n) n!!
hermite(n,x) nth order Hermite polynomial of x
associated legendre(ℓ,x) ℓth-order associated Legendre polynomial of x
bessel first(v,x) Bessel function of the first kind
bessel second(v,x) Bessel function of the second kind
airy first(x) Airy function of the first kind
airy second(x) Airy function of the second kind
chebyshev first(n,x) nth order Chebyshev polynomial of the first kind of x
chebyshev second(n,x) nth order Chebyshev polynomial of the second kind of x

A.2.5 Graphing

Graph variables and function that provide information from preceding graph block
Function Name Returns
xgmin the minimum x-coordinate of the graph
xgmax the maximum x-coordinate of the graph
x2gmin the minimum x2-coordinate of the graph
x2gmax the maximum x2-coordinate of the graph
ygmin the minimum y-coordinate of the graph
ygmax the maximum y-coordinate of the graph
y2gmin the minimum y2-coordinate of the graph
y2gmax the maximum y2-coordinate of the graph
xbar(x,i) the absolute x coordinate of the i-th bar at point x on the graph
xg(xexp) converts units of last graph to abs cm.
xg3d(x,y,z) converts units of last 3D graph to abs cm.
xy2angle(dx,dy) convert rectangular coordinates to polar angle (in degrees)
yg(yexp) converts units of last graph to abs cm.
yg3d(x,y,z) converts units of last 3D graph to abs cm.

A.3. LATEX MACROS 89

A.3 LATEX Macros

There are several LATEX like commands which can be used within text, they are:

\‘ \’ \v \u \= \^ Implemented TeX accents
\. \H \~ \’’ Implemented TeX accents
^{} Superscript
_{} Subscript
\\ Forced newline
_ Underscore character
\, 0.5em (em = width of the letter ‘m’)
\: 1em space
\; 2em space
\! -0.5em space
\tex{expression} Any LaTeX expression
\char{22} Any character in current font
\chardef{a}{hello} Define a character as a macro
\def\v{hello} Defines a macro
\movexy{2}{3} Moves the current text point
\glass Makes move/space work on beginning of line
\it Switches to italic font
\kern{-0.1em} Change inter character distance
\ldots . . .
\lineskip{.1} Sets the default distance between lines of text
\linegap{-1} Sets the minimum required gap between lines
\lower{0.1em}{hello} Lower the given text
\parskip{0.1em} Set distance between paragraphs
\raise{0.1em}{hello} Raise the given text
\rm Switches to roman font
\bf Switches to bold font
\rule{2}{4} Draws a filled in box, 2cm by 4cm
\setfont{rmb} Sets the current text font
\sethei{.3} Sets the font height (in cm)
\setstretch{2} Scales the quantity of glue between words
\tt Switches to typewriter (fixed space) font

90 APPENDIX A. TABLES

A.4 LATEX Symbols

\AA
\AE
\Delta

\Downarrow

\Gamma

\Im
\L
\Lambda

\Leftarrow
\Leftrightarrow
\O
\OE

\Omega

\P
\Phi
\Pi
\Psi
\Re
\Rightarrow
\S
\Sigma

\Theta
\Uparrow
\Updownarrow
\Upsilon
\Xi
\aa
\ae
\aleph
\alpha
\amalg

\approx
\ast
\asymp

\backslash
\beta
\bigcap
\bigcirc
\bigcup
\bigodot
\bigoplus
\bigotimes

\bigsqcup
\bigtriangledown
\bigtriangleup
\biguplus
\bigvee
\bigwedge

\bot
\bullet
\cap
\cdot
\chi
\circ
\clubsuit
\coprod
\cup
\dag
\dagger
\dashv
\ddag
\ddagger
\degree
\delta
\diamond

\diamondsuit

\div
\downarrow
\ell
\emptyset

\epsilon
\equiv
\eta
\exists
\flat
\forall
\frown
\gamma

\geq
\gg
\heartsuit
\i
\imath

\in
\infty
\intop
\iota
\j
\jmath

\kappa
\l
\lambda

\land
\leftarrow
\leftharpoondown
\leftharpoonup

\leftrightarrow
\leq
\lhook
\ll
\lor
\mapsto

\mapstochar

\mid

\minus

\mp

\mu

\nabla
\natural
\nearrow
\neg
\neq
\ni
\not
\nu
\nwarrow
\o
\odot
\oe
\ointop
\omega

\ominus

\oplus
\oslash
\otimes

\owns
\parallel
\partial
\perp
\phi
\pi
\pm
\prec
\preceq
\prime

\prod
\propto
\psi
\rho
\rhook
\rightarrow
\rightharpoondown
\rightharpoonup
\searrow

\setminus

\sharp
\sigma

\sim
\simeq

\smallint

\smile

\spadesuit
\sqcap
\sqcup
\sqsubseteq
\sqsupseteq
\ss
\star
\subset
\subseteq
\succ
\succeq
\sum
\supset
\supseteq
\swarrow
\tau
\theta
\times

\top
\triangle
\triangleleft
\triangleright
\uparrow
\updownarrow
\uplus
\upsilon
\varepsilon
\varphi
\varpi
\varrho
\varsigma

\vartheta
\vdash
\vee
\wedge
\wp
\wr
\xi
\zeta

A.5. FONTS 91

A.5 Fonts

92 APPENDIX A. TABLES

A.6 Font Tables

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

Roman (rm)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

Roman Bold (rmb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

Roman Italic (rmi)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

San Serif (ss)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

San Serif Bold (ssb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

San Serif Italic (ssi)

A.6. FONT TABLES 93

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „ ” » … ‰ ¾ ¿ À
` ´ ˆ ˜ ¯ ˘ ˙

¨
É
˚

¸ Ì
˝

˛
ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â ª ä å æ ç Ł Ø Œ º ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

Typewriter (tt)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _ ‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „ ” » … ‰ ¾ ¿ À
` ´ ˆ ˜ ¯ ˘ ˙

¨
É
˚

¸ Ì
˝

˛
ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â ª ä å æ ç Ł Ø Œ º ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

Typewriter Bold (ttb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „ ” » … ‰ ¾ ¿ À
` ´ ˆ ˜ ¯ ˘ ˙

¨
É
˚

¸ Ì
˝

˛
ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â ª ä å æ ç Ł Ø Œ º ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

Typewriter Italic (tti)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Roman (texcmr)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Bold (texcmb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Text Italic (texcmti)

94 APPENDIX A. TABLES

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Sans Serif (texcmss)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Sans Serif Bold (texcmssb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Sans Serif Italic (texcmssi)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Typewriter Text (texcmtt)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Italic Typewriter (texcmitt)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Maths Italic (texcmmi)

A.6. FONT TABLES 95

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Symbol (texcmsy)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TEXComputer Modern Extensible (texcmex)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! ∀ # ∃ % & ∋
() ∗ + , − . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? ≅ Α Β Χ ∆ Ε Φ Γ Η Ι ϑ Κ Λ Μ Ν Ο

Π Θ Ρ Σ Τ Υ ς Ω Ξ Ψ Ζ [∴] ⊥ _
 α β χ

δ ε φ γ η ι ϕ κ λ µ ν ο π θ ρ σ τ υ ϖ ω

ξ ψ ζ { | } ∼ �  � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

€ ϒ ′ ≤ ⁄ ∞ ƒ ♣ ♦ ♥ ♠ ↔ ← ↑ → ↓ ° ± ″ ≥

× ∝ ∂ • ÷ ≠ ≡ ≈ …  ↵ ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩

∪ ⊃ ⊇
⊄ ⊂ ⊆

∈
∉ ∠ ∇    ∏ √ ⋅ ¬ ∧ ∨ ⇔

⇐ ⇑ ⇒ ⇓ ◊ 〈    ∑          

ð 〉 ∫ ⌠  ⌡          ÿ Á

PostScript Symbol (pssym)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

➾ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ✁ ✂ ✃ ✄ ☎ ✆ ✇

✈ ✉ ☛ ☞ ✌ ✍ ✎ ✏ ✐ ✑ ✒ ✓ ✔ ✕ ✖ ✗ ✘ ✙ ✚ ✛

✜ ✝ ✞ ✟ ✠ ✡ ✢ ✣ ✤ ✥ ✦ ✧ ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯

✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿ ❀ ❁ ❂ ❃

❄ ❅ ❆ ❇ ❈ ❉ ❊ ❋ ● ❍ ■ ❏ ❐ ❑ ❒ ▲ ▼ ◆ ❖ ◗

❘ ❙ ❚ ❛ ❜ ❝ ❞
� ❨ ❩ ❪ ❫ ❬ ❭ ❮ ❯ ❰ ❱ ❲ ❳

❴ ❵ � � � � � � � � � � � � � � � � � �

 ❡ ❢ ❣ ❤ ❥ ❦ ❧ ♣ ♦ ♥ ♠ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧

⑨ ⑩ ❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿ ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇

➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏ ➐ ➑ ➒ ➓ ➔ → ↔ ↕ ➘ ➙ ➚ ➛

➜ ➝ ➞ ➟ ➠ ➡ ➢ ➣ ➤ ➥ ➦ ➧ ➨ ➩ ➪ ➫ ➬ ➭ ➮ ➯

ð ➱ ➲ ➳ ➴ ➵ ➶ ➷ ➸ ➹ ➺ ➻ ➼ ➽ ➾ ÿ Á

PostScript ZapfDingbats (pszd)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Times-Roman (pstr)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Times-Bold (pstb)

96 APPENDIX A. TABLES

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Times-Italic (psti)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Times-BoldItalic (pstbi)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „ ” » … ‰ ¾ ¿ À
` ´ ˆ ˜ ¯ ˘ ˙

¨
É
˚

¸ Ì
˝

˛
ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â ª ä å æ ç Ł Ø Œ º ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Courier (psc)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _ ‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „ ” » … ‰ ¾ ¿ À
` ´ ˆ ˜ ¯ ˘ ˙

¨
É
˚

¸ Ì
˝

˛
ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â ª ä å æ ç Ł Ø Œ º ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Courier-Bold (pscb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „ ” » … ‰ ¾ ¿ À
` ´ ˆ ˜ ¯ ˘ ˙

¨
É
˚

¸ Ì
˝

˛
ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â ª ä å æ ç Ł Ø Œ º ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Courier-Oblique (psco)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _ ‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „ ” » … ‰ ¾ ¿ À
` ´ ˆ ˜ ¯ ˘ ˙

¨
É
˚

¸ Ì
˝

˛
ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â ª ä å æ ç Ł Ø Œ º ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Courier-BoldOblique (pscbo)

A.6. FONT TABLES 97

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Helvetica (psh)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Helvetica-Bold (pshb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Helvetica-Oblique (psho)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Helvetica-BoldOblique (pshbo)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Helvetica-Narrow (pshn)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Helvetica-Narrow-Bold (pshnb)

98 APPENDIX A. TABLES

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Helvetica-NarrowOblique (pshno)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Helvetica-Narrow-BoldOblique (pshnbo)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’
() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript AvantGarde-Book (psagb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’
() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript AvantGarde-Demi (psagd)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’
() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript AvantGarde-BookOblique (psagbo)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’
() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript AvantGarde-DemiOblique (psagdo)

A.6. FONT TABLES 99

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Bookman-Light (psbl)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » …‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Bookman-Demi (psbd)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Bookman-LightItalic (psbli)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » …‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ
Á

PostScript Bookman-DemiItalic (psbdi)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript NewCenturySchlbk-Roman (psncsr)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript NewCenturySchlbk-Bold (psncsb)

100 APPENDIX A. TABLES

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript NewCenturySchlbk-Italic (psncsi)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript NewCenturySchlbk-BoldItalic (psncsbi)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Palatino-Roman (pspr)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Palatino-Bold (pspb)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Palatino-Italic (pspi)

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „
” » … ‰ ¾ ¿ À

` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â
ª

ä å æ ç Ł Ø Œ º
ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript Palatino-BoldItalic (pspbi)

A.6. FONT TABLES 101

24

22

20

18

16

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

þ � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � ! " # $ % & ’

() * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^
_

‘ a b c

d e f g h i j k l m n o p q r s t u v w

x y z { | } ~ � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 ¡ ¢ £ ⁄ ¥ ƒ § ¤ ' “ « ‹ › fi fl ° – † ‡

· µ ¶ • ‚ „ ” » … ‰ ¾ ¿ À
` ´ ˆ ˜ ¯ ˘ ˙

¨
É

˚
¸ Ì

˝
˛

ˇ — Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Ü Ý Þ ß à Æ â ª ä å æ ç Ł Ø Œ º ì í î ï

ð æ ò ó ô ı ö ÷ ł ø œ ß ü ý þ ÿ Á

PostScript ZapfChancery-MediumItalic (pszcmi)

102 APPENDIX A. TABLES

A.7 Predefined Colors

GLE supports these SVG/X11 standard colors (sorted by color)

indianred

lightcoral

salmon

darksalmon

lightsalmon

crimson

red

firebrick

darkred

pink

lightpink

hotpink

deeppink

mediumvioletred

palevioletred

coral

tomato

orangered

darkorange

orange

gold

yellow

lightyellow

lemonchiffon

lightgoldenrodyellow

papayawhip

moccasin

peachpuff

palegoldenrod

khaki

darkkhaki

lavender

thistle

plum

violet

orchid

fuchsia

magenta

mediumorchid

mediumpurple

blueviolet

darkviolet

darkorchid

darkmagenta

purple

indigo

slateblue

darkslateblue

greenyellow

chartreuse

lawngreen

lime

limegreen

palegreen

lightgreen

mediumspringgreen

springgreen

mediumseagreen

seagreen

forestgreen

green

darkgreen

yellowgreen

olivedrab

olive

darkolivegreen

mediumaquamarine

darkseagreen

lightseagreen

darkcyan

teal
aqua

cyan

lightcyan

paleturquoise

aquamarine

turquoise

mediumturquoise

darkturquoise

cadetblue

steelblue

lightsteelblue

powderblue

lightblue

skyblue

lightskyblue

deepskyblue

dodgerblue

cornflowerblue

mediumslateblue

royalblue

blue

mediumblue

darkblue
navy

midnightblue

cornsilk

blanchedalmond

bisque

navajowhite

wheat

burlywood

tan

rosybrown

sandybrown

goldenrod

darkgoldenrod

peru

chocolate

saddlebrown

sienna

brown

maroon

white

snow

honeydew

mintcream

azure

aliceblue

ghostwhite

whitesmoke

seashell

beige

oldlace

floralwhite

ivory

antiquewhite

linen

lavenderblush

mistyrose

gainsboro

lightgray

silver

darkgray

gray

dimgray

lightslategray

slategray

darkslategray

black

gray1

gray5

gray10

gray20

gray30

gray40

gray50

gray60

gray70

gray80

gray90

A.7. PREDEFINED COLORS 103

GLE supports these SVG/X11 standard colors (alphabetical order)

aliceblue

antiquewhite

aqua

aquamarine

azure

beige

bisque

black

blanchedalmond

blue

blueviolet

brown

burlywood

cadetblue

chartreuse

chocolate

coral

cornflowerblue

cornsilk

crimson
cyan

darkblue

darkcyan

darkgoldenrod

darkgray

darkgreen

darkkhaki

darkmagenta

darkolivegreen

darkorange

darkorchid

darkred

darksalmon

darkseagreen

darkslateblue

darkslategray

darkturquoise

darkviolet

deeppink

deepskyblue

dimgray

dodgerblue

firebrick

floralwhite

forestgreen

fuchsia

gainsboro

ghostwhite

gold

goldenrod

gray

green

greenyellow

honeydew

hotpink

indianred

indigo

ivory

khaki

lavender

lavenderblush

lawngreen

lemonchiffon

lightblue

lightcoral

lightcyan

lightgoldenrodyellow

lightgray

lightgreen

lightpink

lightsalmon

lightseagreen

lightskyblue

lightslategray

lightsteelblue

lightyellow

lime

limegreen

linen

magenta

maroon

mediumaquamarine

mediumblue

mediumorchid

mediumpurple

mediumseagreen

mediumslateblue

mediumspringgreen

mediumturquoise

mediumvioletred

midnightblue

mintcream

mistyrose

moccasin

navajowhite

navy

oldlace

olive

olivedrab
orange

orangered

orchid

palegoldenrod

palegreen

paleturquoise

palevioletred

papayawhip

peachpuff

peru

pink

plum

powderblue

purple

red

rosybrown

royalblue

saddlebrown

salmon

sandybrown

seagreen

seashell

sienna

silver

skyblue

slateblue

slategray

snow

springgreen

steelblue

tan

teal

thistle

tomato

turquoise

violet

wheat

white

whitesmoke

yellow

yellowgreen

gray1

gray5

gray10

gray20

gray30

gray40

gray50

gray60

gray70

gray80

gray90

104 APPENDIX A. TABLES

A.8 Wall Reference

Appendix B

Index

105

Index

!, 8, 25
\expr(exp), 85
*, 87
*=, 87
+, 87
++, 87
+=, 87
-, 87
–, 87
-=, 87
.z file, 73
/, 87
/=, 87
=, 86, 87
?, 25
@, 9
%, 87
LATEX, 12, 89

macros, 89
LATEX expression, 62
e , 87
ˆ, 87
>, 86
>=, 86
<, 86
<=, 86
<>, 86
3d bar

notop, 40
offset, 40
side, 40
top, 40

abound, 9
abs(), 87
acos(), 87
acosh(), 87
acot(), 87
acoth(), 87
acsc(), 87
acsch(), 87
add, 9
airy first(), 88
airy second(), 88
alabeldist, 18, 36
alabelscale, 18, 36
aline, 9
aline (closepath), 13
amove, 9
amove (origin), 10

and, 86
angle, 10
arc, 9
arcto, 9
arg(), 51, 85
arg$(), 51
arrow, 9, 18
arrowangle, 18
arrowsize, 18
arrowstyle, 18
asec(), 87
asech(), 87
asin(), 87
asinh(), 87
associated laguerre(), 88
associated legendre(), 88
atan(), 87
atanh(), 87
atitledist, 18, 38
atitlescale, 18, 38
atn(), 87

back, 72
bar

color, 39
dist, 39
fill, 39
from, 39
width, 39

bar graphs, 39
bar graphs 3d, 40
base, 72
baselineskip, 12
begin

box, 9
clip, 10
length, 10
name, 10
object, 10
origin, 10
path, 10
rotate, 10
scale, 11
table, 11
tex, 12
text, 11
text (single line), 22
translate, 12

bessel first(), 88
bessel second(), 88

106

INDEX 107

bevel, 20
bezier, 12
bezier (rbezier), 17
Bezier curve, 9
bitmap, 12
bitmap info, 12
BLANK, 81
border, 33
box, 12

cap, 19
center, 24
char, 12
character size, 20
chardef, 12
chebyshev first(), 88
chebyshev second(), 88
circle, 13
clear, 80
clip, 10, 64
clipping, 64
closepath, 13
color, 19
color (graph lines), 27
color (title), 34
color (variables), 65
color-variables, 65
colormap, 74

command, 13
graph block, 24

commands, 78
comment, 8, 25
compression, 26
contour, 73
copy, 79
cos(), 87
cosh(), 87
cot(), 87
coth(), 87
csc(), 87
csch(), 87
curve, 9, 13
cvtrgb(), 65

dashlen, 19
data, 6, 24, 70, 74, 80
data (example file), 25
data (order), 42
dataxvalue, 52, 85
datayvalue, 52, 85
date$(), 85
def, 12
define marker, 13
delete, 80
deresolve, 26
device control, 58
device$(), 85
diagrams, 59
discontinuity, 26

dn, 27
color, 27
deresolve, 26
err, 26
errdown, 26
errup, 26
errwidth, 26
file, 29
herr, 27
herrleft, 27
herrright, 27
herrwidth, 27
key, 27
line, 27
lstyle, 27
lwidth, 27
marker, 27
mdist, 28
msize, 28
nomiss, 28
smooth, 28
svg smooth, 28
x2axis, 28
xmax, 28
xmin, 28
y2axis, 28
ymax, 28
ymin, 28

double factorial(), 88
draw, 29
droplines, 72
dsubticks, 35
dticks, 35

ellipse, 14
elliptical arc, 14
elliptical narc, 14
else, 14, 55
end if, 14
end path, 10
error bars (see dn err) , 26
eval(), 51, 85, 87
example data file, 25
exit, 80
exp(), 87
expressions, 51

factorial(), 88
fclose, 57
fgetline, 57
file (dataset), 29
file$(), 85
files, 6, 25
fill, 19

color, 40
xmax, 40
xmin, 40
ymax, 40
ymin, 40

108 INDEX

fill patterns, 65
filling, 65
filling areas, 40
fit, 80
Fitls, 77
fitz, 73
fix(), 87
font, 20
font (line width), 20
font (title), 34
font-examples, 91
fontlwidth, 20
fonts, 91
fopen, 57
for, 14, 55
for-next, 29
format$(), 52, 86
fread, 57
freadln, 57
ftokenizer, 57
fullsize, 30
Functions, 83
functions, 54, 85
fwrite, 57
fwriteln, 57

generate, 83
getenv, 85
GLE USRLIB, 15
goto, 80
graphing, 23
graphing functions, 30
Greek characters, 11
grestore, 14
grid, 35
gsave, 14
GZIP, 26

half pi, 87
harray, 70
hei, 20
height(), 53, 85
hermite(), 88
histogram, 32
horiz, 39
horizontal error bars, 27
hscale, 30

I/O-functions, 57
if, 14, 55
ignore, 25
include, 15, 56
insert, 81
int(), 87

join, 15, 20
join (set join), 20
joining, 59
just, 21

justify (box), 12
justify (join), 15
justify (set), 21
justify (tex), 12
justify (text), 11

key, 27
data based, 25
hei, 30
nobox, 30
offset, 30
pos, 30

key (module), 45
key module

absolute, 46
boxcolor, 46
coldist, 46
color, 47
compact, 46
dist, 46
fill, 47
hei, 46
justify, 47
line, 47
llen, 47
lpos, 47
lstyle, 47
lwidth, 47
margins, 47
marker, 47
mscale, 47
msize, 47
nobox, 47
off, 47
offset, 47
pattern, 47
position, 47
row, 46
separator, 48
text, 48
textcolor, 48

LaTeX packages, 63
left$(), 86
len(), 86
length, 10
let, 30

hist, 32
nsteps, 32
range, 32

let (order), 42
line, 27
line width (graphs), 43
lineskip, 12
linfit, 31
load, 81
local, 15, 56
log, 35
log(), 87

INDEX 109

log10(), 87
log10fit, 31
logefit, 31
logging, 82
loops, 55
lstyle, 21
lstyle (graph lines), 27
lstyle (set), 21
lwidth, 21
lwidth (graph lines), 27
lwidth (graphs), 43

Manip, 78
Arrows, 79
Range, 78
usage, 78

marker, 15, 27, 72
markers, 85
mathchar, 12
mathchardef, 12
mathcode, 12
max(), 87
min(), 87
missing, 27
missing value, 25
mitre, 20
move, 81
movexy, 12

name (box), 9, 12
name (join), 15
name (point), 18
narc, 9
nargs(), 51, 85
ndata, 52, 85
ndatasets, 85
negate, 38
new, 81
next, 14, 55
noborder, 33
nobox, 9, 12, 33
nofirst, 35
nolast, 35
nomiss, 28
not(), 86
nsteps, 32
nsubticks, 35
nticks, 35
num1$(), 86
num$(), 86
numrows, 25

or, 86
orientation, 16

pageheight(), 53, 85
pagewidth(), 53, 85
papersize, 16
parsum, 83

path, 10
path$(), 85
paths, 64
pattern, 21

bar, 39
pi, 87
points, 72
pointx(), 85
pointy(), 86
pos(), 86
postscript, 16
powxfit, 31
print, 16
propagate, 82
psbbtweak, 16
pscomment, 17
ptx(), 86
pty(), 86

QGLE, 67
quit, 83

radius, 13
range, 32
rbezier, 17
recover, 78
return, 17, 56
reverse, 17
RGB, 65
rgb(), 19, 86
rgb255(), 19, 65, 86
rgba(), 86
rgba255(), 86
right, 72
right$(), 86
riselines, 72
rline, 18
rmove, 18
rnd(), 87
root pi, 87
root three, 87
root two, 87
rotate, 10, 71
rotate (y2title), 38
round, 20
round (cap), 19
round (join), 20

save, 18, 80
Savitsky Golay smoothing, 28
scale, 11, 33
scale (marker), 15
sdvi(), 87
sec(), 88
sech(), 88
seg$(), 86
set between, 81
set coltype, 82
set colwidth, 82

110 INDEX

set digits, 82
set dpoints, 82
set ncol, 82
set size, 81
set width, 82
setfont, 12
sethei, 12
setstretch, 12
sgn(), 88
shell, 83
sin(), 88
single, 78
sinh(), 88
size, 33, 69
size x y, 78
skirt, 72
smooth, 28, 74
smoothm, 28
sort, 81
spherical harmonic(), 88
sqr(), 88
sqrt(), 88
step, 14, 78
string

constants, 54
variables, 54

stroke, 10
stroking, 64
sub, 22
subroutines, 56
sum, 82
Surface, 69
svg smooth, 28
swap, 22, 81
symbols, 90

table, 11
tan(), 88
tanh(), 88
tdepth(), 86
TeX, 12
tex, 22, 62
tex (begin), 12
tex (width), 12
texscale, 21
text, 22
text (begin), 11
text (width), 11
theight(), 53, 86
then, 14, 55
ticksscale, 21
time$(), 86
title, 34, 71

color, 34
dist, 34
font, 34
hei, 34

titlescale, 21, 34
todeg(), 88

top, 72
torad(), 88
translate, 12
twidth(), 53, 86
two pi, 87

underneath, 72
Unicode, 63
until, 55
UTF-8, 63

val(), 86
values, 74
variables, 51, 54
view, 71
vscale, 34

while, 55
width(), 53, 86
wmarker, 15
write, 22

x2axis (see xaxis), 34
x2gmax, 88
x2gmin, 88
x2labels

on, 34
x2side (see xside), 38
xaxis, 34, 71

base, 35
color, 35
dsubticks, 35
dticks, 35
font, 35
grid, 35
hei, 35
log, 35
lwidth, 35
max, 35
min, 35
neagte, 38
nofirst, 35
nolast, 35
nsubticks, 35
nticks, 35
off, 36
shift, 36
symticks, 36

xbar(), 88
xend(), 53, 86
xg(), 54, 88
xg3d(), 88
xgmax, 88
xgmin, 88
xlabels, 36

color, 36
dist, 36
font, 36
hei, 36

INDEX 111

log, 36
off, 36
on, 36

xlines, 70
xnames, 37
xnoticks, 38
xoffset, 40
xplaces, 38
xpos(), 54, 86
xside, 38

color, 38
lwidth, 38

xsubticks, 38
length, 38
lstyle, 38
lwidth, 38
off, 38
on, 38

xticks, 38
length, 38
lstyle, 38
lwidth, 38
off, 38

xtitle, 38, 71
adist, 38
color, 38
dist, 38
font, 38
hei, 38

xy2angle(), 88

y2axis (see xaxis), 34
y2gmax, 88
y2gmin, 88
y2side (see xside), 38
y2title rotate, 38
yaxis, 71
yaxis (see xaxis), 34
yend(), 53, 86
yg(), 54, 88
yg3d(), 88
ygmax, 88
ygmin, 88
ylines, 71
ynames (see xnames), 37
yoffset, 40
ypos(), 54, 86
yside (see xside), 38
yticks (see xticks), 38
ytitle, 71
ytitle (see xtitle), 38

zaxis, 71
zclip, 73
ztitle, 71

	Preface
	Tutorial
	Installing GLE
	Running GLE
	Drawing a Line on a Page
	Drawing a Simple Graph

	Primitives
	Graphics Primitives (a summary)
	Graphics Primitives (in detail)

	The Graph Module
	Graph Commands (a summary)
	Graph Commands (in detail)
	Bar Graphs
	3D Bar Graphs
	Filling Between Lines
	Polar Plots

	Notes on Drawing Graphs
	Importance of Order
	Layers
	Line Width

	The Key Module
	Global Commands
	Entry Definition Commands
	Defining the Key in the Graph Block

	Programming Facilities
	Expressions
	Functions Inside Expressions
	Using Variables
	String constants
	Programming Loops
	If-then-else
	Subroutines
	Default Arguments

	Forward Declarations
	I/O Functions
	Device Dependent Control

	Advanced Features
	Diagrams
	Named Boxes and the Join Command
	Object Blocks and Hierarchically Named Points

	LaTeX Interface
	Example
	Using LaTeX Packages
	Using UTF-8 Encoding in GLE Scripts with LaTeX Expressions
	Import a GLE Figure in a LaTeX Document
	The .gle Directory

	Filling, Stroking and Clipping Paths
	Colour
	GLE's Configuration File

	QGLE: GLE's Graphical User Interface
	Surface and Contour Plots
	Surface Primitives
	Overview
	Surface Commands

	Letz
	Fitz
	Contour
	Color Maps

	GLE Utilities
	Fitls
	Manip
	Usage
	Manip Primitives (a summary)
	Manip Primitives (in detail)

	Tables
	Markers
	Functions and Variables
	General Program
	String or Text Manipulation
	Logical Operators
	Mathematical Operators, Constants, and Functions
	Graphing

	LaTeX Macros
	LaTeX Symbols
	Fonts
	Font Tables
	Predefined Colors
	Wall Reference

	Index

