1y
mmmm SCONS

Build your software, better.

SCons4.5.2

User Guide

The SCons Development Team



Version 4.5.2
Copyright © 2004 - 2023 The SCons Foundation
Publication date Released: Mon, 06 Mar 2023 23:58:40 -0400



Table of Contents

(= =0 ST PT T OPPTTR iX
L. SCONS PIINCIPIES ettt et e et e et b e et e b e e et e e e nb s iX

2. HOW t0 USE ThiS GUITE ....euiiiiiiiii ettt ettt e et et e e e ne s iX

3. A Caveat About This GUIJE'S COMPIELENESS ... .ciiiiiieiiii et e s X

4. ACKNOWIBAGEMENTS ...ttt ettt e et ettt e et et e et e e e e e enb e e eeaaas X
SO0 4 | - o APPSR X

1. Building and INStAlliNg SCONS ......uuiiiiii ettt e et e e et eeana s 1
L1 INSAliNG PYNON ..ot 1

1.2, INSEATING SCOMNS ...ttt ettt e et e ettt e et e e e et e e b et e e e e eneas 2

1.3. Using SCons Without INSEaIlING ....c..uniiiiiieiiii e 3

1.4. Running Multiple Versions of SCoNns Side-by-Side ...........oviiiiiiiiiiiiii e 3

2. SIMPIE BUIIAS ...ttt e et e et e et e s 5
2.1. Building SImple C / CH+ PrOgramS. .....cccuuuiiiiiiieeeiii ettt ettt e e et e e e et eeena e aees 5

2.2. BUIldiNG OBJECE FIIES ..ottt e ee e eees 6

2.3. SIMPIE JAVA BUILAS ..ot e et 6

2.4, Cleaning Up ATLEr @ BUITO .....ooouuiiiiii et e e e eaeens 7

25. The SCONST T UCT Fle e ettt 8
25.1. SConst ruct Files Are Python SCripES .......ccuuiiiiiiiiiiiiii e 8

2.5.2. SCons Functions Are Order-INdependent ............oooeuuiiiiiiiiee e 8

2.6. Making the SCons Output Less VErDOSE .........uiiiiiiiiii e 9

3. Less Simple Things to DO With BUITAS ........cooiiiiiiiiii e 10
3.1. Specifying the Name of the Target (OULPUL) File ..........uiiiiiiii e 10

3.2. Compiling MUItIple SOUICE FlES ......uiiiiii e e 11

3.3. Making alist of fileSWith G 0D ... e 11

3.4. Specifying Single Files VS, LiStS Of FIlES .......iiiiiiiiiii e 12

3.5. Making Lists Of Files EaSier 10 REA ........couuiiiiiiiiieiiiii ettt 13

3.6, KEYWOIA ATQUIMIENTS .oettieiiiti ettt e et e ettt e e et e e ettt e e et et e e et et e e e e et e e e e ebaeas 13

3.7. Compiling MUIIPIE PrOgraMS ......couuuiiiiiie ettt et e e e e e 14

3.8. Sharing Source Files Between MUltiple Programs ............oiceeiiiiieiiiiiiee e 14

4. Building and Linking With LIDIariEeS .........cooeuiiiiiiiii e e e e e e eeees 16
A1, BUIlAING LIBrariES ...t 16
4.1.1. Building Libraries From Source Code or Object FIles .........ccooiiiiiiiiiiiiiiii e 17

4.1.2. Building Static Libraries Explicitly: the St at i cLi brary Builder ..........ccc.ooovviiiiiiinnnnen. 17

4.1.3. Building Shared (DLL) Libraries: the Shar edLi brary Builder ...........cccooiviiiiiiiiiiinnnnnn. 17

4.2, LinKing WIth LIDIariES ........eiiiiii ettt eenees 18

4.3. Finding Libraries: the $L1 BPATH Construction Variable .............cccooiiiiiiiiiiiiiineeceeeiii e 19

I N oo (S @ 1= ot £ SO T U PPTRPPPPT 20
5.1. Builder Methods Return Lists of Target NOUES .........ociiiiiiiiiiiiiiiciiii e 20

5.2. Explicitly Creating File and Directory NOUES ..........ccoeuuiiiiiiiiieiiiii e 21

5.3. Printing NOA@ File NBMES ... .ottt e e e e e e enaes 21

5.4. Using a Node's File NamMe 8S @ SING ....cccvuuiiiiiiiaiiii ettt 22

5.5. Get Bui | dPat h: Getting the Path From aNode or SINg ......cc.vuvieiiiiiiiiiiiiee e 22

B. DEPENUENCIES ... iieitie ettt ettt ettt ettt ettt ettt e e e e e 24
6.1. Deciding When an Input File Has Changed: the Deci der FUNCtON ...........c.ocoeviiiieiiiiinieiiiiineeeens 24
6.1.1. Using Content Signatures to Decide if aFile Has Changed ...........cccooovviiiiiiniiiiiiiniccee, 25

6.1.2. Using Time Stamps to Decide If aFile Has Changed ...........coovveiiiiiiieiiiiiic e 26

6.1.3. Deciding If aFile Has Changed Using Both MD Signatures and Time Stamps ............c......... 27

6.1.4. Extending SCons: Writing Y our Own Custom Deci der Function ..............cccooviiveiinnennnn. 27

6.1.5. Mixing Different Ways of Deciding If aFile Has Changed .............ccccooiviiiiiiiiiiiiinienennnn. 29

6.2. Implicit Dependencies. The $CPPPATH Construction Variable ..., 30

6.3. Caching IMPliCit DEPENAENCIES .......eiiiti ittt ettt ettt e e et e et e e e e nb e e e eebnaeeeens 31

~

'—‘—' SCONS iii



6.3.1. The--inplicit-deps-changed Option ........c.ccooiiiiiiiiiiiiiii e 32

6.3.2. The--inplicit-deps-unchanged Option ........ccccceiiiiiiiiiiiiieii e 32
6.4. Explicit Dependencies: the Depends FUNCHON ..........cooiiiiiiiiiii i e 32
6.5. Dependencies From External Files: the Par seDepends FUNCLiON ..........cccccciviiiiiiiiiieiiineciieenen, 33
6.6. Ignoring Dependencies: the | gnor e FUNCHION .......coouiiiiiiiiiic e 34
6.7. Order-Only Dependencies; the Requi r €S FUNCION .........ccoooviiiiiiiiiiiccie e 35
6.8. The Al WaySBUI | d FUNCHION ....iiieiiiici e e e e e e e e e e 37
A =071 (0000101 PP 39
7.1. Using Values From the External ENVIFONMENT ........ccouiiiiiiiiiiieiie e e e e e 40
7.2. CONSIIUCHION ENVIFONMENES ....utiiiiiiiieeiiiii et e e e et e et e e et e e et s e e e et e e e e et e e e e ern s 41
7.2.1. Creating a Construction Environment: the Envi r onment Function ..............ccooceeieeine. 41
7.2.2. Fetching Vaues From a Construction EnVironment ..........ccocoieeiiiiiiiniiii e 41
7.2.3. Expanding Values From a Construction Environment: the subst Method .......................... 43
7.2.4. Handling Problems With Value EXPanSiON ...........ccceuuieiiiiiiiiiieii e e e e e e e 43
7.2.5. Controlling the Default Construction Environment: the Def aul t Envi r onment Function
....................................................................................................................................... 44
7.2.6. Multiple Construction ENVIFONMENES .........civuieiiiiiiii e e eeeeee et e et e e e e e e e aane e 45
7.2.7. Making Copies of Construction Environments: the Cl one Method ................ccoeeiiieninnils 46
7.2.8. Replacing Values: the Repl ace Method .........cooooviiiiiiiii e, 47
7.2.9. Setting Values Only If They're Not Already Defined: the Set Def aul t Method ................. 48
7.2.10. Appending to the End of Values: the Append Method ...........cccoooiiiiiiiiiiniiis 48
7.2.11. Appending Unique Values. the AppendUni que Method ............cooveiiiiiiiin e, 49
7.2.12. Prepending to the Beginning of Values: the Pr epend Method .............coooeiiiiiiiienennnn, 49
7.2.13. Prepending Unique Values. the Pr ependUni que Method ............coocoiiiiiiiiiiincieeennn, 50
7.2.14. Overriding Construction Variable SEttiNgS .......coovviiiiiiiiiiicii e 50
7.3. Controlling the Execution Environment for Issued Commands ...........cccoeeeiiieiiiiiiiiiecinieee e 51
7.3.1. Propagating PATH From the External ENVIironment ............ccocoiiiiiiiiiiiiieiin e 52
7.3.2. Adding to PATH Values in the Execution EnNVIronment .............ccoovvviiieiiiieeiin e, 53
7.4. Using the toolpath for external TOOIS .......c..oiiiiiiiiiii e e e 53
7.4.1. The default tool Search Path ......ccoveiiiii e 53
7.4.2. Providing an external directory to toolpath ...........ccooooiiiiiiiiiii 53
7.4.3. Nested Tools within atoolpath ...........cooiiiiiii e 54
7.4.4. Using sys.path within the toolpath ..o, 54
7.4.5. Using the PyPackageDi r function to add to thetoolpath ..............cccoooviiiiiiiin . 55
8. Automatically Putting Command-line Options into their Construction Variables ............cccccccoevviiiiiinennnnn. 56
8.1. Merging Options into the Environment: the Mer geFl ags Function .............cccoooviiiiiiiiinennens 56
8.2. Merging Options While Creating Environment: the par se_f | ags Parameter .............co.cceveeennnnns 57
8.3. Separating Compile Arguments into their Variables: the Par seFl ags Function ..............ccc.ccov.ii. 58
8.4. Finding Installed Library Information: the Par seConfi g Function ............cc.occoeveiiiiiiniiinnecennn. 59
9. Controlling BUIlA OULPUL ........iiiiiiii e e e e e e e e r e e e et e et e e et e e et s e e st e e aan e e st e eeaneeannaees 61
9.1. Providing Build Help: the Hel p FUNCLION .......oouiiiiii e 61
9.2. Controlling How SCons Prints Build Commands: the $* COVSTR Variables ............cccceevviiiiiinnnnns 62
9.3. Providing Build Progress Output: the Pr ogr €Ss FUNCLION .........ccoviiiiiiiiiiiiiiii e 64
9.4. Printing Detailed Build Status: the Get Bui | dFai | ures FUnction ..........cccooooiveiiieiiiieiineeennnn, 65
10. Controlling a Build From the Command LiNE ..........ccooiuiiiiiiiiii e e e 68
10.1. Command-Ling OPLIONS .....uuiiiiuiiiiiieiiie e e et et e et e e e e e e e et e e e e et e e et e e et e e et e e eeanaeeen 68
10.1.1. Not Having to Specify Command-Line Options Each Time: the SCONSFLAGS
Environment Variale ........ooooiiiiiiiii e 68
10.1.2. Getting Values Set by Command-Line Options: the Get Qpt i on Function ....................... 69
10.1.3. Setting Values of Command-Line Options: the Set OQpt i on Function ...............ccceeeevnnnnes 70
10.1.4. Strings for Getting or Setting Values of SCons Command-Line Options .............ccccecevvveeee. 71
10.1.5. Adding Custom Command-Line Options. the AddQOpt i on Function ............ccccceeiieennnne. 72
10.2. Command-Line vari abl e=val ue Build Variables ...........ccccooviiiiiiiiiiiiiiii e, 73
10.2.1. Controlling Command-Line Build Variables .............cccoooiiiiiiiiii e, 74

Iy
=== SCONS iv



10.2.2. Providing Help for Command-Line Build Variables ............c..ccooiiiiiiiiiii s 75

10.2.3. Reading Build Variables From a File .........ccoiiiiiiiiiiiii e 76
10.2.4. Pre-Defined Build Variable FUNCHIONS .......ocuuiiiiiiiiiiciis e 76
10.2.5. Adding Multiple Command-Line Build Variablesat ONnce ..........ccoevviviiiiiiiiiiiciiineeieeenn, 83

10.2.6. Handling Unknown Command-Line Build Variables: the UnknownVar i abl es Function
....................................................................................................................................... 84
10.3. ComMMANG-LiNg TaIGEIS .ovuuiiiiieiiieii e et e e e e e e e e e e e e e e e et e e et e et s e e et e e anneeeanns 85
10.3.1. Fetching Command-Line Targets: the COVMAND LI NE_TARGETS Variable .................... 85
10.3.2. Controlling the Default Targets: the Def aul t FUNCLION .......ccocovvviiiiiiiiiiei e, 85

10.3.3. Fetching the List of Build Targets, Regardless of Origin: the BUl LD _TARGETS Variable

....................................................................................................................................... 88
11. Installing Files in Other Directories: the l nst al | BUIlder ........cccooeiiiiiiiiiiii e 90
11.1. Installing Multiple FIleS N @ DIFECIOIY .....uiiiiniiiiiieeiii et e e e e e e e aeaas 91
11.2. Installing a File Under a DIifferent NaME ..........iiiiiiiiiiiiiii e e e e e e 91
11.3. Installing Multiple Files Under Different NameS ......c..ooviiiiiiiiiiii e 92
11.4. Installing @ Shared Library ......co.ooiiiiiiiiiii e e e e e e e e e e e aenas 92
12. Platform-Independent File System Manipulation ..........c.cooiiiiiiiiiiiiiiec e e e 93
12.1. Copying Files or Directories: The COPY FaCLOrY ......ccooiiiiiiiiiiiiciie e 93
12.2. Deleting Files or Directories: The Del €t € FaCtOry .....couuviiiiiiiii e 94
12.3. Moving (Renaming) Files or Directories: The Move Factory .........ccooveviiiiiiiiiiiiiiin e, 95
12.4. Updating the Modification Time of a File: The Touch FaCtory ........ccooevviiiiiiiiiiiinccieeeeeeen, 96
12.5. Creating a Directory: The MKdi I FaCtOry ........ieiiiiiiii i e e e e 96
12.6. Changing File or Directory Permissions. The Chnod Factory ..........ccooevviiiiiiiiiiiiccii e, 97
12.7. Executing an action immediately: the Execut @ FUNCLION ........cccvviiiiiiiiiciii e, 97
13. Controlling REMOVEl OF TAIGELS ...cvvuiiiiiiiiii i e e e e e e e e e e e et e e et e e et e e et e e et e eanaeeaes 99
13.1. Preventing target removal during build: the Pr eci ous FUNCtion .............ccoooeviiiiiiniiiiniecieeennne, 99
13.2. Preventing target removal during clean: the NoCl ean FuNction .............ccocciiiiiineiiiiiii e, 99
13.3. Removing additional files during clean: the Cl ean FUNCLiON ..........ccooeviiiiiiiieiiii e, 100
14, HierarchiCal BUILAS .....vuiiiiiiii e e e e e e e e et e e e e et e e e e et s 101
I S0 ] F=Y o T o) = S 101
14.2. Path Names Are Relative to the SCoNSCri pt DIreCtOry .......ocevviiiiiiieiiieeii e, 102
14.3. Top-Relative Path Names in Subsidiary SConscri pt Fles .....ccooiiiiiiiiiiie e 103
14.4. ADSOIULE Path NBIMES ...t e et e e e et e e e eaa s 103
14.5. Sharing Environments (and Other Variables) Between SConscri pt Files .....cooooiiiiiiiinnnnnnn. 104
14.5.1. EXPorting VariablES ......iiieiiii e 104
14.5.2. Importing VariablES ......iiiiiii e 105
14.5.3. Returning Values From an SConscri pt File ..o 106
15. Separating Source and Build Trees: Variant DIr€CIONES .........iiviiiiiiiiiiiiieiie e e e 108
15.1. Specifying a Variant Directory Tree as Part of an SConscri pt Cal ......c.ccooveviiiiiiiiiininns 109
15.2. Why SCons Duplicates Source Filesin a Variant Directory Tree .......ovevviveiiiieiiiieiiiiieiiieeeiieens 110
15.3. Telling SCons to Not Duplicate Source Filesin the Variant Directory Tree .......ccoocevvveviieeennnn. 110
15.4. The Vari ant Di 1 FUNCHION ...ooouuiiii et e et e e e 111
15.5. Using Vari ant Di r Withan SConscript File ....ooocoiiiiiiiii e, 112
15.6. Using A 0b With Vari @ant Di I ...oouiiii e e e e e eaeas 112
15.7. Variant BUild EXGMPIES ...covuiiiici e e 113
16. Building From Code REPOSITOMNES ......cuuiiiiieiiieiiii e e e e e e e e e e e e e e e et e e et e e et e e st e e st e eaaeaannaees 115
16.1. The RepoSi t Ory MENOO ....covviiiiiii e e e e aaaas 115
16.2. Finding source fileS in FEPOSITONES ......uuiiiiiiiii e e e e e e e e e e e e aanaees 115
16.3. Finding #i ncl ude fileSin rePOSITONIES .....civviiiii e 116
16.3.1. Limitations on #i ncl ude filesin repoSitorieS .......c.ooveviiiiiiiiiiiii e 117
16.4. Finding the SConst ruct file in repOSItONES ......cccvvniiiiiiiii e 118
16.5. Finding derived fileS iN FEPOSITONES ....ivvuiiiiiii e e e e e aeaas 118
16.6. Guaranteeing local COpIES Of fIlES ...iuuiiii i e 119
17. Extending SCons: Writing Your OWN BUIIAErS .........cooiiniiiiiiiii e 120

Iy
=== SCONS v



18.
19.
20.

21.

22.

23.
24.

25.

26.

27.

17.1. Writing Builders That Execute External CoOmMmMandsS ............coevviiiiiiieiiiieiiiieeiin e e e e 120

17.2. Attaching a Builder to a Construction ENVIFONMENT .........cocuiiiiiiiiiiiieiiieeci e ee e e e 120
17.3. Letting SCons Handle The File SUFfIXES ........uiiiiiiiiii e 122
17.4. Builders That Execute Python FUNCLONS ...........oiiiiiiiiiiiciie e e s 122
17.5. Builders That Create Actions USING @ GENEIAION .......cevvuieiinieiiiieiiiieeeee e e e e e e e e e eanas 123
17.6. Builders That Modify the Target or Source Lists Using an Emitter ...........c.occoeveiiiiiiniiiiieeennnns 124
17.7. Modifying a Builder by adding an EMItter ...........cooiiiiiiiiiiicii e 125
17.8. Where To Put Your Custom Builders and TOOIS ........ccoeuuiiiiiiiiiiiiiiiin e 126
Not Writing a Builder: the Command BUIlAEr ..........ccoouiiiiiiiiii e e 129
Extending SCons: Pseudo-Builders and the AddMethod function .............cccooeeiiiiiiiiiinin e, 131
Extending SCons; Writing YOur OWN SCANNELS .......ciuuuiiiiiieeiieeiieei e esieesteestee st seeanaesateeeaneaennaes 133
20.1. A SImple SCanner EXAMPIE ....coouiii i 133
20.2. Adding a search path to ascanner: Fi ndPat hDi 'S .....cooooiiiiiiiiiii e, 134
20.3. Using scanners With BUIIAEIS ........coouniiiiiiiii e e e e e 135
Multi-Platform Configuration (Autoconf FUNCLIONEIITY) ....ocovniiiniiiiici e 136
b2 I IR O 1 o 0 =3 @)1=t (=S 136
21.2. Checking for the Existence of Header Fil€S ........uviiiiiiiiiiiii e, 137
21.3. Checking for the Availability of @ FUNCLION .......c.oiiiiiiii e 137
21.4. Checking for the Availability of aLibrary ........cooooiiiiiiiiii 138
21.5. Checking for the Availability of at ypedef ... 138
21.6. Checking the SIZe Of @ dalalyPe ....cvvvuiiiiieii i e e e aeas 139
21.7. Checking for the Presence of @ program ........iceue e e e e e e e e e eanas 139
21.8. Extending SCons: Adding Y our Own Custom Checks ..........ccooeiiiiiiiiiiiiiiii e, 139
21.9. Not Configuring When Cleaning TargelS ........ccuuviiiiiiiiieiiii e e e e e e e e e e eaaaas 141
(0= o o 1 oo I S 011 = 142
22.1. Specifying the Derived-File Cache DIreClOry ........cooiiiiiiiiiiiiei e e 142
22.2. Keeping Build OULPUL CONSISEENT ....coviiiiiicii e e e e e e e e e e e e et e e eaeeaens 143
22.3. Not Using the Derived-File Cache for SpecifiC FileS ......cooviiiiiiiii e 143
22.4. Disabling the Derived-File Cathe ........co.iiiiiiiii e 144
22.5. Populating a Derived-File Cache With Already-BUilt FIl€S ..........coooviiiiiiiiii e 144
22.6. Minimizing Cache Contention: the - - r andomOPLION ...........oviiiiiiiiiieii e 145
22.7. Using a Custom CaCheDir ClasS ......cccuuiiiiiiiiiiieiiii e et e e e e e e e e e e e e et e et e e e e aanaees 146
y Y = S = = £ 147
= (V7= = 11 T o PR 149
24.1. Building Java Class Files: the Java BUIldEr ........cooviiiiiiiiii e 149
24.2. How SCons Handles Java DEPENTENCIES .........uiiiiiiiiiiiiiiii e e e e e e e e e e 149
24.3. Building Java Archive (. j ar) Files: the Jar Builder ..........cccooiviiiiiiiiiiiii e, 150
24.4. Building C Header and Stub Files: the JavaHBuUIlder ............ccoooiiiiiiiiini e, 151
24.5. Building RMI Stub and Skeleton Class Files: the RM CBuUilder .........cocoooviiiiiiiiiiiiiinieeeis 152
Internationalization and localization With gELEEXE ..........oiviiiiiii i 153
T T 1= = o 0T (= P 153
IS 4] o L o] ()= AP 153
MiSCEIlaNEOUS FUNCHIONAIITY .....uuiiiii i e e e e e e et e e e e e e e et e e eaneeeaaaas 159
26.1. Verifying the Python Version: the Ensur ePyt honVer si on Function ..............cccoocviivieien. 159
26.2. Verifying the SCons Version: the Ensur eSConsVer si on Function ............ccooeeviviiiieiinnennnn. 159
26.3. Explicitly Terminating SCons While Reading SConscr i pt Files: the Exi t Function ................ 160
26.4. Searching for Files: the Fi ndFi | @ FUNCLON .......cccoviiiiiiiii e 160
26.5. Handling Nested Lists: the Fl at t en FUNCHION .........cooviiiiiiiiiii e, 162
26.6. Finding the Invocation Directory: the Get LaunchDi r FUNCtion .............cccooeviiiiiiiiieiiinceinnen, 163
26.7. Declaring Additional Outputs: the Si deEf f ect Function ...........ccooooiiiiiiiiiiiiie e, 164
26.8. Virtual environments (VIFUGIENVS) .....ciiuniiiiiiiii e e e e e e e e e e et e e e e e e aenas 166
Using SCons with other build tO0IS ...........iiiiiiiii e 167
27.1. Creating a Compilation Datalase ...........oeiviiiiiiiieii e e 167
A7 N[ o =W =10 1 (o I = 0 T= = o G PP 169

Iy
=== SCONS vi



22 T I (010 o] == aTo o) oo 171

28.1. Why is That Target Being Rebuilt? the - - debug=expl ai n Option ..........ccoooeviiiiiiiiiiiieeinns 171
28.2. What's in That Construction Environment? the Dunp Method .............cocooiiiiiiiiiii e, 173
28.3. What Dependencies Does SCons Know About?the--tree Option ........c.cccoviviiiiiiiieiiineiinenns 178
28.4. How is SCons Constructing the Command Lines It Executes? the - - debug=pr esub Option ...... 184
28.5. Where is SCons Searching for Libraries? the - - debug=fi ndl i bs Option ...............cc.ccoen. 184
28.6. Where is SCons Blowing Up? the - - debug=st ackt race Option ..........cccocecieeviiieiiiiiennnnnnns 185
28.7. How is SCons Making Its Decisions? the - - t askmast ertrace Option .........cccccoeveviieennnnnn. 185
28.8. Watch SCons prepare targets for building: the - - debug=pr epar e Option ............c..ceevevinns 187
28.9. Why is afile disappearing? the - - debug=dupl i cat e Option ............ccooveiiiiiiiiiiiiceeeenn, 187
28.10. KEED It SIMPIE oot 187
A. CONSITUCHION VaBDIES ...t et e e et e e ettt e e e e et reeeettaeeeeranaeaeees 189
2 ST (= PSP 262
3 1o S PPRPPIN: 292
D. Functions and ENvironment MEthOOS ...........oiiiiiiiiiiiiii e e e 308
[ o =g To [T o R @0 T ) N I S T PP 345

Iy
=== SCONS vii



List of Examples

E.1. Wildcard globbing to create alist Of fIilenames ...........oooiiiiiiiiii e 345
E.2. Filename extension SUBSHITULION .............iiiiiiiiiii et e 345
E.3. Appending a path prefix to alist of filleNamMES .......cooouuiiiiiii e 345
E.4. Substituting a path prefix with another 0Ne ... 345
E.5. Filtering a filename list to exclude/retain only a specific set of eXtensions ...........ccceeiveveiiiieiiiiiiieeennnn, 345
E.6. The "backtick function": run a shell command and capture the QULPUL ............ccooviiiiiiiiiiieiiiiiieeeiiieees 345
E.7. Generating source code: how code can be generated and used by SCoNS ..........coovviiiiiiiiiiiiiien, 346
~

'—‘—' SCONS viii



SCons Principles

Preface

Thank you for taking the time to read about SCons. SCons is a modern software construction too - a software utility
for building software (or other files) and keeping built software up-to-date whenever the underlying input files change.

The most distinctive thing about SCons is that its configuration files are actually scripts, written in the Python
programming language. Thisisin contrast to most alternative build tools, which typically invent a new language to
configure the build. SCons still has a learning curve, of course, because you have to know what functions to call to
set up your build properly, but the underlying syntax used should be familiar to anyone who has ever looked at a
Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to learn than
the cryptic languages of other build tools, which are usually invented by programmers for other programmers. Thisis
in no small part due to the consistency and readability that are hallmarks of Python. It just so happens that making a
real, live scripting language the basis for the configuration files makes it a snap for more accomplished programmers
to do more complicated things with builds, as necessary.

1. SCons Principles

There are afew overriding principles the SCons team tries to follow in the design and implementation.

Correctness
First and foremost, by default, SCons guarantees a correct build even if it means sacrificing performance alittle.
We strive to guarantee the build is correct regardless of how the software being built is structured, how it may
have been written, or how unusual the tools are that build it.

Performance
Given that the build is correct, we try to make SCons build software as quickly as possible. In particular, wherever
we may have needed to slow down the default SCons behavior to guarantee a correct build, we also try to make
it easy to speed up SCons through optimization options that let you trade off guaranteed correctness in all end
cases for a speedier build in the usual cases.

Convenience
SConstriesto do as much for you out of the box as reasonable, including detecting the right tools on your system
and using them correctly to build the software.

In anutshell, we try hard to make SCons just "do the right thing" and build software correctly, with a minimum of
hassles.

2. How to Use this Guide

This guide intends to coach you how to use SCons effectively and efficiently, by providing a range of examples and
usage scenarios. Assuch it is not exactly atutorial (as usually those build a single example topic from start to finish),
but if you are just starting with SConsit is recommended you step through thefirst 10 chaptersin sequence as thiswill
giveasolid grounding in the principles of working with SCons. If you follow that trail, you can feel freetoinitially skip
sections on extending SCons, such as Writing your own Decider Function, and come back to those if the need arises.

The remaining chapters cover more advanced topics that not all build systems will need, and can be used in more of
asingle-topic way, to read if you find you need that particular information.

It is often useful to keep SCons man page open in a separate browser tab or window to refer to as a complement to this
Guide, as the User Guide does not attempt to provide every detail. While this Guide's Appendices A-D do duplicate

Iy
=== SCONS iX



A Caveat About This Guide's Compl eteness

information that appearsin the man page (thisisto allow intra-document links to definitions of construction variables,
builders, tools and environment methods to work), the rest of the man page is unique content.

3. A Caveat About This Guide's Completeness

SCons is a volunteer-run open source project. As such, the SCons documentation isn't dways completely up-to-date
with al the available features - somehow it's almost harder to write high quality, easy to use documentation than it
is to implement a feature in software. In other words, there may be alot that SCons can do that isn't yet covered in
this User's Guide.

Although this User's Guide may not be as complete as it could be, the development process does emphasize making
surethat the SCons man pageiskept up-to-date with new features. So if you'retrying to figure out how to do something
that SCons supports but can't find enough (or any) information here, it would be worth your while to look at the man
pageto seeif theinformation is covered there. And if you do, maybe you'd even consider contributing a section to the
User's Guide so the next person looking for that information won't have to go through the same thing...?

4. Acknowledgements

SCons would not exist without a lot of help from alot of people, many of whom may not even be aware that they
helped or served as inspiration. So in no particular order, and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic Perl-based
Constool which Bob first rel eased to the world back around 1996. Bob'swork on Cons classic provided the underlying
architecture and model of specifying a build configuration using areal scripting language. My real-world experience
working on Cons informed many of the design decisions in SCons, including the improved parallel build support,
making Builder objects easily definable by users, and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software Carpentry
design competition in February 2000. Without that nudge, marrying the advantages of the Cons classic architecture
with the readability of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near as useful a
tool without the energy, enthusiasm and time peopl e have contributed over the past few years. The"coreteam” of Chad
Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel, Gary Oberbrunner, Greg Spencer and
Christoph Wiedemann have been great about reviewing my (and other) changes and catching problems before they
get in the code base. Of particular technical note: Anthony's outstanding and innovative work on the tasking engine
has given SCons avastly superior parallel build model; Charles has been the master of the crucial Node infrastructure;
Christoph'swork on the Configureinfrastructure has added crucial Autoconf-like functionality; and Greg has provided
excellent support for Microsoft Visual Studio.

Specia thanks to David Snopek for contributing his underlying "Autoscons' code that formed the basis of Christoph's
work with the Configure functionality. David was extremely generous in making this code available to SCons, given
that heinitially released it under the GPL and SConsis released under aless-restrictive MIT-style license.

Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the SCons project
with arobust development methodology from day one, and which showed me how you could integrate incremental
regression tests into a practical development cycle (years before eXtreme Programming arrived on the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for the SCons
implementation, but for the interface itself.

5. Contact

The best way to contact people involved with SCons, is through the SCons mailing lists.

Iy
=== SCONS X



Contact

If you want to ask general questions about how to use SCons send email to <scons- user s@cons. or g>.
If you want to contact the SCons development community directly, send email to <scons- dev@cons. or g>.

For quicker, informal questions, discussion, etc. the project operated a Discord server at https://discord.gg/bXVpWAyY
and aLibera.chat IRC channel at https://web.libera.chat/#scons (the former channel at irc.freenode.net isnow unused).
Certain discussions may also be moved by administrators from mailing list or chat to GitHub Discussions [https:/
github.com/SCons/scons/discussions] for greater permanence and easier finding.

Iy
=== SCONS Xi


https://discord.gg/bXVpWAy
https://web.libera.chat/#scons
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions

1 Building and Installing
SCons

This chapter will take you through the basic steps of installing SCons so you can useit for your your projects. Before
that, however, this chapter will also describe the basic stepsinvolved in installing Python on your system, in case that
is necessary. Fortunately, both SCons and Python are easy to install on almost any system, and Python already comes
installed on many systems.

1.1. Installing Python

Because SCons is written in the Python programming language, you need to have a Python interpreter available on
your system to use SCons. Before you try to install Python, check to seeif Python is already available on your system
by typing pyt hon -V (capital V') or pyt hon --versi on at your system's command-line prompt. For Linux/
Unix/MacOS/BSD type systems this looks like:

$ python -V
Pyt hon 3.9. 15

If you get aversion like 2.7.x, you may need to try using the name python3 - current SCons no longer works with
Python 2.

Note to Windows users: there are a number of different ways Python can be installed or invoked on Windows, it is
beyond the scope of this guide to unravel all of them. Some have an additional program called the Python launcher
(described, somewhat technically, in PEP 397 [https://www.python.org/dev/peps/pep-0397/]): try using the command
name py instead of python, if that is not available drop back to trying python

C\>py -V
Pyt hon 3.9. 15

If Python is not installed on your system, or is not findable in the current search path, you will see an error message
stating something like" conmmand not found" (on UNIX or Linux) or "' pyt hon' is not recognized
as an internal or external conmand, operable progam or batch file" (onWindows
cmd). In that case, you need to either install Python or fix the search path before you can install SCons.


https://www.python.org/dev/peps/pep-0397/
https://www.python.org/dev/peps/pep-0397/

Installing SCons

The link for downloading Python installers (Windows and Mac) from the project's own website is. https://
www.python.org/download. There are useful system-specific entries on setup and usage to be found at: https./
docs.python.org/3/using

For Linux systems, Python is almost certainly available as a supported package, probably installed by default; thisis
often preferred over installing by other means as the system package will be built with carefully chosen optimizations,
and will be kept up to date with bug fixes and security patches. Infact, the Python project itself doesnot build installers
for Linux for thisreason. Many such systems have separate packagesfor Python 2 and Python 3 - make sure the Python
3 packageisinstalled, as the latest SCons requires it. Building from source may still be a useful option if you need a
specific version that is not offered by the distribution you are using.

Recent versions of the Mac no longer come with Python pre-installed; older versions came with a rather out of date
version (based on Python 2.7) which is insufficient to run current SCons. The python.org installer can be used on the
Mac, but there are aso other sources such as MacPorts and Homebrew. The Anaconda installation also comes with
abundled Python.

Windows has even more choices. The Python.org installer isatraditional . exe style; the same softwareisalso released
as a Windows application through the Microsoft Store. Several alternative builds also exist such as Chocolatey and
ActiveState, and, again, aversion of Python comes with Anaconda.

SCons will work with Python 3.6 or later. If you need to install Python and have a choice, we recommend using the
most recent Python version available. Newer Python versions have significant improvements that help speed up the
performance of SCons.

1.2. Installing SCons

The recommended way to install SCons is from the Python Package Index (PyPI [https:.//pypi.org/project/SCons/]):
% python -mpip install scons

If you prefer not to install to the Python system location, or do not have privilegesto do so, you can add aflag toinstall
to alocation specific to your own account and Python version:

% python -mpip install --user scons

For those users using Anaconda or Miniconda, use the conda installer instead, so the sconsinstall location will match
the version of Python that system will be using. For example:

% conda install -c conda-forge scons

If you need a specific version of SCons that is different from the current version, pi p has a version option (e.g.
python -mpip install scons==3. 1. 2), or you can follow the instructionsin the following sections.

SCons does comes pre-packaged for installation on many Linux systems. Check your package installation system
to see if there is an up-to-date SCons package available. Many people prefer to install distribution-native packages
if available, as they provide a central point for management and updating; however not al distributions update in a
timely fashion. During the still-ongoing Python 2 to 3 transition, some distributions may still have two SCons packages
available, one which uses Python 2 and one which uses Python 3. Since the latest scons only runs on Python 3, to get
the current version you should choose the Python 3 package.

Iy
=== SCONS 2


https://www.python.org/download
https://www.python.org/download
https://docs.python.org/3/using
https://docs.python.org/3/using
https://pypi.org/project/SCons/
https://pypi.org/project/SCons/

Using SCons Without Installing

1.3. Using SCons Without Installing

Y oudon't actually need to "install" SConsto useit. Nor do you need to "build" it, unlessyou areinterested in producing
the SCons documentation, which does use several tools to produce HTML, PDF and other output formats from files
in the source tree. All you need to do is call the scons. py driver script in alocation that contains an SCons tree,
and it will figure out therest. Y ou can test that like this:

$ python /path/to/unpacked/scripts/scons. py --version

To make use of an uninstalled SCons, the first step is to download either the scons-4.5. 2. tar. gz or
scons- 4. 5. 2. zi p, which are available from the SCons download page at https://scons.org/pages/download.html.
Thereisalsoascons- | ocal bundleyou can make useof. It isarranged alittle bit differently, with theideathat you
can include it with your own project if you want people to be able to do builds without having to download or install
SCons. Finally, you can aso use a checkout of the git tree from GitHub at alocation to point to.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows. This will
create a directory called scons- 4. 5. 2, usually in your local directory. The driver script will be in a subdirectory
named scri pt s, unlessyou are using scons- | ocal , in which case it will be in the top directory. Now you only
need to call scons. py by giving afull or relative path to it in order to use that SCons version.

Note that instructions for older versions may have suggested running pyt hon setup. py install to"build
and install" SCons. This is no longer recommended (in fact, it is not recommended by the wider Python packaging
community for any end-user installations of Python software). There is a set up. py file, but it is only tested and
used for the automated procedure which prepares an SCons bundle for making arelease on PyPl, and even that is not
guaranteed to work in future.

1.4. Running Multiple Versions of SCons Side-
by-Side

In some cases you may need severa versions of SCons present on a system at the same time - perhaps you have an
older project to build that has not yet been "ported” to a newer SCons version, or maybe you want to test anew SCons
release side-by-side with a previous one before switching over. The use of an "uninstalled" package as described in
the previous section can be of use for this purpose.

Another approach to multiple versions is to create Python virtualenvs, and install different SCons versions in each.
A Python virtual environment is a directory with an isolated set of Python packages, where packages you install/
upgrade/removeinside the environment do not affect anything outsideit, and those you install/upgrade/remove outside
of it do not affect anything inside it. In other words, anything you do with pip in the environment stays in that
environment. The Python standard library provides amodule called venv for creating these (https://docs.python.org/
ellibrary/venv.html), although there are also other tools which provide more precise control of the setup.

Using a virtualenv can be useful even for a single version of SCons, to gain the advantages of having an isolated
environment. It also gets around the problem of not having administrative privileges on a particular system to install
adistribution package or use pip to install to a system location, as the virtualenv is completely under your control.

The following outline shows how this could be set up on a Linux/POSIX system (the syntax will be a bit different
on Windows):

$ create virtual env naned scons3
$ create virtual env naned scons4

Iy
=== SCONS 3


https://scons.org/pages/download.html
https://docs.python.org/e/library/venv.html
https://docs.python.org/e/library/venv.html

Running Multiple Versions of SCons Side-by-Side

source scons3/bin/activate

pip install scons==3.1.2

deacti vate

source scons4/ bin/activate

pip install scons

deacti vate

activate a virtual env and run 'scons' to use that version

R R e A T e T T

Iy
=== SCONS 4



2 Simple Builds

Inthischapter, you will see several examplesof very simple build configurations using SCons, which will demonstrate
how easy it is to use SCons to build programs from several different programming languages on different types of
systems.

2.1. Building Simple C / C++ Programs

Here's the famous "Hello, World!" programin C:

i nt
mai n()
{
printf("Hello, world!\n");
}

And here'show to build it using SCons. Save the code aboveinto hel | o. ¢, and enter the following into afile named
SConstruct :

Program(' hello.c")

This minimal configuration file gives SCons two pieces of information: what you want to build (an executable
program), and theinput file from which you want it built (thehel | o. c file). Pr ogr amisabuilder method, a Python
call that tells SCons that you want to build an executable program.

That's it. Now run the scons command to build the program. On a POSIX-compliant system like Linux or UNIX,
you'll see something like:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

On aWindows system with the Microsoft Visual C++ compiler, you'll see something like:



Building Object Files

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

First, notice that you only need to specify the name of the source file, and that SCons correctly deduces the names of
the object and executable files to be built from the base of the source file name.

Second, notice that the same input SConst r uct file, without any changes, generates the correct output file names
on both systems: hel | 0. 0 and hel | 0 on POSIX systems, hel | 0. obj and hel | 0. exe on Windows systems.
Thisisasimple example of how SCons makes it extremely easy to write portable software builds.

(Note that we won't provide duplicate side-by-side POSIX and Windows output for al of the examplesin this guide;
just keep in mind that, unless otherwise specified, any of the examples should work equally well on both types of
systems.)

2.2. Building Object Files

The Pr ogr ambuilder method is only one of many builder methods that SCons provides to build different types of
files. Another isthe Obj ect builder method, which tells SCons to build an object file from the specified source file:

oject (' hello.c")

Now when you run the scons command to build the program, it will build just the hel | 0. o object file on a POSIX
system:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

scons: done buil ding targets.

Andjustthe hel | 0. obj object file on a Windows system (with the Microsoft Visua C++ compiler):

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
scons: done buil ding targets.

2.3. Simple Java Builds

SCons also makes building with Java extremely easy. Unlike the Pr ogr amand Obj ect builder methods, however,
the Java builder method requires that you specify the name of a destination directory in which you want the class
files placed, followed by the source directory in which the . j ava fileslive:

Iy
=== SCONS 6



Cleaning Up After aBuild

Java(' cl asses', 'src')

If the sr ¢ directory contains asingle hel | o. j ava file, then the output from running the scons command would
look something like this (on a POSIX system):

% scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

javac -d classes -sourcepath src src/hello.java
scons: done buil ding targets.

WEe'll cover Javabuildsin more detail, including building Java archive (. j ar ) and other types of file, in Chapter 24,
Java Builds.

2.4. Cleaning Up After a Build

When using SCons, it is unnecessary to add special commands or target names to clean up after a build. Instead, you
simply usethe - ¢ or - - ¢l ean option when you invoke SCons, and SCons removes the appropriate built files. So if
we build our example above and then invoke scons - ¢ afterwards, the output on POSIX looks like:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

% scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cleaning targets ..

Renoved hell o. o

Rermoved hel | o

scons: done cl eani ng targets.

And the output on Windows looks like:

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nologo
link /nologo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.
C.\>scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved hel | o. obj

Rermoved hel | 0. exe

scons: done cl eani ng targets.

Iy
=== SCONS 7



The SConst r uct File

Notice that SCons changes its output to tell you that it isCl eaning targets ... and done cl eaning
targets.

2.5. The SConstruct File

If you're used to build systemslike Make you've already figured out that the SConst r uct fileisthe SConsequivalent
of aMakefi | e. Thatis, the SConst r uct fileistheinput file that SCons reads to control the build.

2.5.1. SConst ruct Files Are Python Scripts

There is, however, an important difference between an SConst r uct fileand aMakef i | e: the SConst ruct file
is actually a Python script. If you're not aready familiar with Python, don't worry. This User's Guide will introduce
you step-by-step to the relatively small amount of Python you'll need to know to be able to use SCons effectively.
And Python isvery easy to learn.

One aspect of using Python as the scripting language is that you can put commentsin your SConst r uct fileusing
Python's commenting convention; that is, everything between a'# and the end of the line will be ignored:

# Arrange to build the "hell o" program
Progran(' hello.c') # "hello.c" is the source file.

You'll see throughout the remainder of this Guide that being able to use the power of areal scripting language can
greatly simplify the solutions to complex requirements of real-world builds.

2.5.2. SCons Functions Are Order-Independent

One important way in which the SConst r uct file is not exactly like a normal Python script, and is more like a
Makef i | e, isthat the order in which the SCons functions are called in the SConst r uct file does not affect the
order in which SCons actually builds the programs and object files you want it to build 1 In other words, when you
call the Pr ogr ambuilder (or any other builder method), you're not telling SConsto build the program at that moment.
Instead, you're telling SCons what you want accomplished, and it's up to SCons to figure out how to do that, and to
take those stepsif/when it's necessary. We'll learn more about how SCons decides when building or rebuilding atarget
is necessary in Chapter 6, Dependencies, below.

SCons reflects this distinction between calling a builder method like Pr ogr amand actually building the program
by printing the status messages that indicate when it's "just reading" the SConst r uct file, and when it's actually
building the target files. This is to make it clear when SCons is executing the Python statements that make up the
SConst r uct file, and when SConsiis actually executing the commands or other actions to build the necessary files.

Let's clarify this with an example. Python hasapr i nt function that prints a string of characters to the screen. If we
put pri nt calsaround our calsto the Pr ogr ambuilder method:

print("Calling Progran('hello.c')")
Program(' hello.c")

print("Calling Program ' goodbye.c')")
Pr ogr am(' goodbye. c')

print("Finished calling Program()")

4n programming parlance, the SConst r uct file is declarative, meaning you tell SCons what you want done and let it figure out the order in
which to do it, rather than strictly imperative, where you specify explicitly the order in which to do things.

Iy
=== SCONS 8



Making the SCons Output Less Verbose

Then when we execute SCons, we see the output from calling the pri nt function in between the messages about
reading the SConscri pt files, indicating that is when the Python statements are being executed:

% scons

scons: Readi ng SConscript files ...
Calling Progran(' hello.c')

Cal l'i ng Progran(' goodbye.c')

Fi ni shed cal l'i ng Program()

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 goodbye.o -c goodbye. c

cc -0 goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

Notice that SCons built the goodbye program first, even though the "reading SConscr i pt " output shows that we
caled Progranm(' hel I 0. c') firstinthe SConst r uct file.

Notice also that SCons was able to infer alot of information from the two Pr ogr amcalls. Because hel | 0. ¢ and
goodbye. ¢ were recognized as C-language sourcefiles, it knew to build theintermediate target fileshel | 0. o0 and
goodbye. o and the fina files hel | o and goodbye It was not necessary to program scons beyond just caling
Program

2.6. Making the SCons Output Less Verbose

You've aready seen how SCons prints some messages about what it's doing, surrounding the actual commands used
to build the software:

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

link /nologo /QUT: hel | 0. exe hel | 0. obj
enmbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

These messages emphasi ze the order in which SCons does itswork: all of the configuration files (generically referred
to as SConscri pt files) are read and executed first, and only then are the target files built. Among other benefits,
these messages help to distinguish between errors that occur while the configuration files are read, and errors that
occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately, they're easily disabled by using the
- Qoption when invoking SCons:

C.\>scons -Q

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enmbedMani f est ExeCheck(target, source, env)

Because we want this User's Guide to focus on what SCons is actually doing, we're going to use the - Q option to
remove these messages from the output of all the remaining examplesin this Guide.

Iy
=== SCONS 9



3 Less Simple Things to Do
With Builds

In this chapter, you will see several examplesof very simple build configurations using SCons, which will demonstrate
how easy it is to use SCons to build programs from several different programming languages on different types of
systems.

3.1. Specifying the Name of the Target (Output)
File

You've seen that when you call the Pr ogr ambuilder method, it builds the resulting program with the same base
name as the source file. That is, the following call to build an executable program from the hel | 0. ¢ source file will
build an executable program named hel | 0 on POSIX systems, and an executable program named hel | 0. exe on
Windows systems:

Progran(' hello.c")

If you want to build a program with a different name than the base of the source file name, you simply put the target
file name to the | eft of the source file name:

Progran(' new_hello', '"hello.c")

(SCons requires the target file name first, followed by the source file name, so that the order mimics that of an
assignment statement in most programming languages, including Python: "t ar get = source fil es".Foran
alternative way to supply thisinformation, see Section 3.6, “Keyword Arguments’).

Now SCons will build an executable program named new_hel | o when run on a POSIX system:

% scons -Q
cc -0 hello.o -c hello.c
cc -0 new hello hello.o

And SCons will build an executable program named new_hel | 0. exe when run on a Windows system:

C.\>scons -Q



Compiling Multiple Source Files

cl /Fohello.obj /c hello.c /nol ogo
link /nol ogo /QUT: new_hel | 0. exe hel |l 0. obj
enbedMani f est ExeCheck(target, source, env)

3.2. Compiling Multiple Source Files

Y ou'vejust seen how to configure SConsto compile aprogram from a single sourcefile. It's more common, of course,
that you'll need to build a program from many input source files, not just one. To do this, you need to put the source
filesin a Python list (enclosed in square brackets), like so:

Program(['prog.c', 'filel.c', '"file2.c'])

A build of the above example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -o prog prog.o filel.o file2.0

Notice that SCons deduces the output program name from the first source file specified in the list--that is, because the
first sourcefilewaspr og. ¢, SConswill namethe resulting program pr og (or pr og. exe on aWindows system). If
you want to specify adifferent program name, then (as we've seen in the previous section) you slide the list of source
files over to the right to make room for the output program file name. (SCons puts the output file name to the left of
the source file names so that the order mimics that of an assignment statement: pr ogram = source files.)
This makes our example:

Program(' programi, ['prog.c', 'filel.c', '"file2.c'])

On Linux, abuild of this example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -o programprog.o filel.o file2.0

Or on Windows;

C.\>scons -Q

cl /Fofilel.obj /c filel.c /nol ogo

cl /Fofile2.0obj /c file2.c /nol ogo

cl /Foprog.obj /c prog.c /nol ogo

link /nol ogo /QUT: program exe prog.obj filel.obj file2.obj
enmbedMani f est ExeCheck(target, source, env)

3.3. Making a list of files with 3 ob

You can aso use the @ ob function to find al files matching a certain template, using the standard shell pattern
matching characters* (to match everything), ? (to match asingle character) and [ abc] tomatchany of a,borc.[!
abc] isalso supported, to match any character except a, b or ¢. This makes many multi-source-file builds quite easy:

Iy
=== SCONS 11



Specifying Single Files Vs. Lists of Files

Program(' programi, G ob('*.c'))

A ob has powerful capabilities - it matches even if the file does not exist, but SCons can determine that it would exist
after abuild. You will meet it again reading about variant directories (see Chapter 15, Separating Source and Build
Trees: Variant Directories) and repositories (see Chapter 16, Building From Code Repositories).

3.4. Specifying Single Files Vs. Lists of Files

We've now shown you two ways to specify the source for a program, one with alist of files:

Program(' hello', ['filel.c', 'file2.c'])

And onewith asinglefile:

Program(' hello', '"hello.c")

Y ou could actually put asingle file name in alist, too, which you might prefer just for the sake of consistency:
Program(' hello', ['hello.c'])

SCons functionswill accept asingle file name in either form. In fact, internally, SConstreats all input aslists of files,
but allows you to omit the square brackets to cut down alittle on the typing when there's only a single file name.

I mportant

Although SCons functions are forgiving about whether or not you use astring vs. alist for asingle file name,
Python itself is more strict about treating lists and strings differently. So where SCons allows either a string
or list:

# The following two calls both work correctly:
Progran(' progranl', 'prograntl.c')
Progran(' progran®', ['progranR.c'])

Trying to do "Python things" that mix strings and lists will cause errors or lead to incorrect results:

comon_sources = ['filel.c', "file2.c']

# THE FOLLOWN NG | S | NCORRECT AND GENERATES A PYTHON ERROR
# BECAUSE IT TRIES TO ADD A STRING TO A LI ST:
Program(' progranil', comon_sources + 'progranil.c')

# The foll owi ng works correctly, because it's adding two
# lists together to make another |ist.

Iy
=== SCONS 12



Making Lists of Files Easier to Read

Program(' progran®', comon_sources + ['progran?.c'])

3.5. Making Lists of Files Easier to Read

One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes (either
single quotes or double quotes). This can get cumbersome and difficult to read when the list of file names is long.
Fortunately, SCons and Python provide anumber of ways to make sure that the SConst r uct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Spl i t function that takes a quoted list of
file names, with the names separated by spaces or other white-space characters, and turnsit into alist of separate file
names. Using the Spl i t function turns the previous example into:

Progran(' programi, Split('main.c filel.c file2.c'))

(If you're already familiar with Python, you'll have realized that thisis similar tothespl i t () method in the Python
standard st r i ng module. Unlikethespl i t () member function of strings, however, the Spl i t function does not
require a string as input and will wrap up a single non-string object in alist, or return its argument untouched if it's
already alist. This comesin handy as away to make sure arbitrary values can be passed to SCons functions without
having to check the type of the variable by hand.)

Putting the call to the Spl i t function inside the Pr ogr amcall can also be a little unwieldy. A more readable
alternative is to assign the output from the Spl i t call to a variable name, and then use the variable when calling
the Pr ogr amfunction:

src_ files = Split('main.c filel.c file2.c")
Progranm(' program, src files)

Lastly, the Spl i t function doesn't care how much white space separates the file names in the quoted string. This
allowsyou to create lists of file names that span multiple lines, which often makes for easier editing:

src_files = Split("""main.c
filel.c
file2.c""")

Progran(' program, src_files)

(Note in this example that we used the Python "triple-quote” syntax, which allows a string to contain multiple lines.
The three quotes can be either single or double quotes.)

3.6. Keyword Arguments

SCons also alows you to identify the output file and input source files using Python keyword arguments t ar get
and sour ce. The Python syntax for thisis:

src_files = Split('min.c filel.c file2.c")
Progran(target = program, source=src_files)

Iy
=== SCONS 13



Compiling Multiple Programs

Because the keywords explicitly identify what each argument is, the order does not matter and you can reverse it if
you prefer:

src_files = Split('min.c filel.c file2.c")
Program(source=src_files, target="program)

Whether or not you choose to use keyword arguments to identify the target and source files, and the order in which
you specify them when using keywords, are purely personal choices; SCons functions the same regardless.

3.7. Compiling Multiple Programs

In order to compile multiple programs within the same SConst r uct file, simply cal the Pr ogr ammethod multiple
times, once for each program you need to build:

Program(' foo.c')
Program('bar', ["barl.c', 'bar2.c'])

SCons would then build the programs as follows:

% scons -Q

cc -0 barl.o0 -c barl.c
cc -0 bar2.0 -c bar2.c
cc -0 bar barl.o0 bar2.o0
cc -o foo.o -c foo.c

cc -o foo foo.o

Notice that SCons does not necessarily build the programs in the same order in which you specify them in the
SConst r uct file. SCons does, however, recognize that the individual object files must be built before the resulting
program can be built. We'll discuss thisin greater detail in the "Dependencies’ section, below.

3.8. Sharing Source Files Between Multiple
Programs

It's common to re-use code by sharing source files between multiple programs. Oneway to do thisisto create alibrary
from the common source files, which can then be linked into resulting programs. (Creating libraries is discussed in
Chapter 4, Building and Linking with Libraries, below.)

A more straightforward, but perhaps less convenient, way to share source files between multiple programsis simply
to include the common filesin the lists of source files for each program:

Program(Split('foo.c conmpbnl.c common2.c'))
Program('bar', Split('barl.c bar2.c comobnl.c comopn2.c'))

SCons recognizes that the object files for the commonl. ¢ and cormon2. ¢ source files each need to be built only
once, even though the resulting object files are each linked in to both of the resulting executable programs:

% scons -Q

Iy
=== SCONS 14



Sharing Source Files Between Multiple Programs

cc -0 barl.o0 -c barl.c

cc -0 bar2.0 -c bar2.c

cc -0 commpnl.o -c¢ commonl. c

CC -0 comDNn2.0 -C conmobn2.c

cc -0 bar barl.o0 bar2.o0 conmpnl.o comDn2. 0
cc -o foo.o -c foo.c

cc -o foo foo.o compnl. o conmon2. o

If two or more programs share alot of common source files, repeating the common filesin the list for each program
can be a maintenance problem when you need to change the list of common files. Y ou can simplify this by creating a
separate Python list to hold the common file names, and concatenating it with other lists using the Python + operator:

comon = ['comonl.c', 'common2.c']
foo files = ['foo.c'] + conmon
bar files = ['"barl.c', 'bar2.c'] + common

Program('foo', foo files)
Progran(' bar', bar_files)

Thisisfunctionally equivalent to the previous example.

Iy
=== SCONS 15



4 Building and Linking with
Libraries

It's often useful to organize large software projects by collecting parts of the software into one or morelibraries. SCons
makes it easy to create libraries and to use them in the programs.

4.1. Building Libraries

Y ou build your own libraries by specifying Li br ar y instead of Pr ogr am
Library('foo', ['fl.c', '"f2.¢c', '"f3.c'])

SConsusesthe appropriatelibrary prefix and suffix for your system. So on POSIX or Linux systems, the above example
would build as follows (although ranlib may not be called on al systems):

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0
ranlib |ibfoo.a

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nologo

lib /nologo /QUT:foo.lib f1.0bj f2.o0obj f3.obj

The rules for the target name of the library are similar to those for programs: if you don't explicitly specify a target
library name, SConswill deduce onefrom the name of thefirst sourcefile specified, and SConswill add an appropriate
file prefix and suffix if you leave them off.



Building Libraries From Source Code or Object Files

4.1.1. Building Libraries From Source Code or Object
Files

The previous example shows building alibrary from alist of source files. Y ou can, however, aso givethelLi br ary
call object files, and it will correctly realize they are object files. In fact, you can arbitrarily mix source code files and
object filesin the source list:

Library('foo', ['fl.c', '"f2.0', '"f3.¢c', 'f4.0'])

And SCons realizes that only the source code files must be compiled into object files before creating the final library:

% scons -Q

cc -o fl.o -c fl.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0 f4.0
ranlib |ibfoo.a

Of course, in this example, the object files must already exist for the build to succeed. See Chapter 5, Node Objects,
below, for information about how you can build object files explicitly and include the built filesin alibrary.

4.1.2. Building Static Libraries Explicitly: the
StaticLi brary Builder

The Li br ary function builds a traditional static library. If you want to be explicit about the type of library being
built, you can use the synonym St at i cLi br ary functioninstead of Li brary:

StaticLibrary('foo', ['fl.c', 'f2.¢c', 'f3.¢c'])

Thereisno functional difference betweenthe St at i cLi brary and Li br ary functions.

4.1.3. Building Shared (DLL) Libraries: the
Shar edLi br ary Builder

If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use the
Shar edLi br ary function:

Shar edLi brary(' foo', ['fl.c', 'f2.¢', 'f3.¢c'])

The output on POSIX:

% scons -Q

cc -o fl.os -c fl.c

cc -o f2.0s -c f2.¢c

cc -o f3.0s -c f3.c

cc -0 libfoo.so -shared f1.0s f2.0s f3.o0s

And the output on Windows:

Iy
=== SCONS 17



Linking with Libraries

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

link /nologo /dll /out:foo.dll /inplib:foo.lib f1.0bj f2.0bj f3.obj
RegSer ver Func(target, source, env)

enmbedMani f est D | Check(target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the - shar ed option for a POSIX
compilation, and the/ dl | option on Windows.

4.2. Linking with Libraries

Usually, you build alibrary because you want to link it with one or more programs. Y ou link libraries with a program
by specifying the libraries in the $L1 BS construction variable, and by specifying the directory in which the library
will be found inthe $LI BPATH construction variable:

Library('foo', ['fl.c', '"f2.¢c', '"f3.¢c'])
Program(' prog.c', LIBS=['foo', 'bar'], LIBPATH=".")

Notice, of course, that you don't need to specify alibrary prefix (likel i b) or suffix (like. a or. |i b). SCons uses
the correct prefix or suffix for the current system.

On aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0
ranlib |ibfoo.a

CC -0 prog.o -c prog.c

CC -0 prog prog.o -L. -Ifoo -Ibar

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.obj /c f1l.c /nol ogo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

lib /nologo /QUT:foo.lib f1.0bj f2.0bj f3.o0bj

cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LIBPATH:. foo.lib bar.lib prog. obj
enbedMani f est ExeCheck(target, source, env)

Asusual, notice that SCons has taken care of constructing the correct command linesto link with the specified library
on each system.

Note also that, if you only have asingle library to link with, you can specify the library namein single string, instead
of aPython list, so that:

Program(' prog.c', LIBS=' foo', LIBPATH=".")

Iy
=== SCONS 18



Finding Libraries: the $LI BPATH Construction Variable

is equivaent to:
Program(' prog.c', LIBS=['foo0'], LIBPATH=".")

Thisissimilar to the way that SCons handles either a string or alist to specify a single source file.

4.3. Finding Libraries: the $LI1 BPATH
Construction Variable

By default, the linker will only look in certain system-defined directories for libraries. SCons knows how to look for
libraries in directories that you specify with the $LI BPATH construction variable. $L1 BPATH consists of a list of
directory names, like so:

Program(' prog.c', LIBS = "'m,
LI BPATH = ['/usr/lib', '/usr/local/lib'])

Using a Python list is preferred because it's portable across systems. Alternatively, you could put all of the directory
names in asingle string, separated by the system-specific path separator character: acolon on POSIX systems:

LI BPATH = ' /usr/lib:/usr/local/lib'
or a semi-colon on Windows systems:
LI BPATH = 'C:\\lib; D:\\Ii b’

(Note that Python requires that the backslash separators in a Windows path name be escaped within strings.)

When the linker is executed, SCons will create appropriate flags so that the linker will look for libraries in the same
directories as SCons. So on aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q
CC -0 prog.o -c prog.c
CC -0 prog prog.o -L/usr/lib -L/usr/local/lib -Im

On aWindows system, a build of the above example would look like:
C.\>scons -Q
cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LI BPATH: \usr\lib /LIBPATH: \usr\local\lib mlib prog.obj
enbedMani f est ExeCheck(target, source, env)

Note again that SCons has taken care of the system-specific details of creating the right command-line options.

Iy
=== SCONS 19



5 Node Objects

Internally, SConsrepresents all of the files and directories it knows about as Nodes. These internal objects (not object
files) can be used in avariety of waysto make your SConscr i pt files portable and easy to read.

5.1. Builder Methods Return Lists of Target
Nodes

All builder methods return alist of Node objects that identify the target file or files that will be built. These returned
Nodes can be passed as arguments to other builder methods.

For example, suppose that we want to build the two object files that make up a program with different options. This
would mean calling the Obj ect builder once for each object file, specifying the desired options:

Obj ect (" hello.c', CCFLAGS='-DHELLO )
nj ect (' goodbye. c', CCFLAGS=' - DGOODBYE' )

One way to combine these object files into the resulting program would be to cal the Pr ogr ambuilder with the
names of the object files listed as sources:

Obj ect (" hello.c', CCFLAGS='-DHELLO )
oj ect (' goodbye. ¢c', CCFLAGS=' - DGOODBYE' )
Program([' hel l 0. 0', 'goodbye.o'])

The problem with specifying the names as stringsisthat our SConst r uct fileisno longer portable across operating
systems. It won't, for example, work on Windows because the object files there would be named hel | 0. obj and
goodbye. obj , not hel | 0. 0 and goodbye. o.

A better solution is to assign the lists of targets returned by the calls to the Obj ect builder to variables, which we
can then concatenate in our call to the Pr ogr ambuilder:

hello_ list = Object(' hello.c', CCFLAGS='-DHELLO )
goodbye |ist = Object (' goodbye.c', CCFLAGS='- DGOODBYE')
Program(hell o_list + goodbye |ist)



Explicitly Creating File and Directory Nodes

Thismakes our SConst r uct file portable again, the build output on Linux looking like:

% scons -Q

cc -0 goodbye.o -c - DGOODBYE goodbye. c
cc -0 hello.o -c -DHELLO hello.c

cc -0 hello hello.o goodbye. o

And on Windows:

C.\>scons -Q

cl / Fogoodbye. obj /c goodbye.c - DGOODBYE

cl /Fohello.obj /c hello.c -DHELLO

link /nologo /QUT: hel | 0. exe hel | 0. obj goodbye. obj
enmbedMani f est ExeCheck(target, source, env)

WEe'll see examples of using the list of nodes returned by builder methods throughout the rest of this guide.

5.2. Explicitly Creating File and Directory
Nodes

It's worth mentioning here that SCons maintains a clear distinction between Nodes that represent files and Nodes that
represent directories. SCons supportsFi | e and Di r functions that, respectively, return afile or directory Node:

hello c = File('hello.c")
Program(hel | o_c)

classes = Dir('classes')
Java(cl asses, 'src')

Normally, you don't need to call Fi | e or Di r directly, because calling a builder method automatically trests strings
as the names of files or directories, and translates them into the Node objects for you. The Fi | e and Di r functions
can come in handy in situations where you need to explicitly instruct SCons about the type of Node being passed to a
builder or other function, or unambiguously refer to a specific file in adirectory tree.

There are also times when you may need to refer to an entry in a file system without knowing in advance whether
it'safile or adirectory. For those situations, SCons also supports an Ent r y function, which returns a Node that can
represent either afile or adirectory.

xyzzy = Entry('xyzzy')

Thereturned xyzzy Node will be turned into afile or directory Node the first timeit is used by a builder method or
other function that requires one vs. the other.

5.3. Printing Node File Names

One of the most common things you can do with aNode is useit to print the file name that the node represents. Keep
in mind, though, that because the object returned by a builder call isalist of Nodes, you must use Python subscripts
to fetch individual Nodes from the list. For example, the following SConst r uct file:

Iy
=== SCONS 21



Using aNode's File Name as a String

object list = Cbject('hello.c")

program|ist = Progran(object list)

print("The object file is: %" %bject |ist[0])
print("The programfile is: %" %rogramlist[0])

Would print the following file names on a POSIX system:

% scons -Q

The object file is: hello.o
The programfile is: hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

And the following file names on a Windows system:

C.\>scons -Q

The object file is: hello.obj

The programfile is: hello.exe

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)

Note that in the above example, the obj ect _|i st [ 0] extractsan actual Node object from the list, and the Python
pri nt function converts the object to a string for printing.

5.4. Using a Node's File Name as a String

Printing aNode's name as described in the previous section works because the string representation of aNode object
is the name of thefile. If you want to do something other than print the name of the file, you can fetch it by using the
builtin Python st r function. For example, if you want to use the Python o0s. pat h. exi st s to figure out whether
afile exists whilethe SConst r uct fileisbeing read and executed, you can fetch the string as follows:

i mport os.path
programlist = Progran(' hello.c')
program nane = str(programlist[0])
i f not os.path. exists(program nane):
print ("% does not exist!"%rogram nane)

Which executes as follows on a POSIX system:

% scons -Q

hell o does not exi st!

cc -o hello.o -c hello.c
cc -o hello hello.o

5.5. Get Bui | dPat h: Getting the Path From a
Node or String

env. Get Bui | dPat h(file_or _Iist) returnsthe path of aNode or astring representing apath. It can also take
alist of Nodes and/or strings, and returns the list of paths. If passed asingle Node, the result is the same as calling

Iy
=== SCONS 22



Get Bui | dPat h: Getting the Path From aNode or
String

st r (node) (seeabove). Thestring(s) can have embedded construction variables, which are expanded asusual, using
the calling environment's set of variables. The paths can be files or directories, and do not have to exist.

env=Envi r onment ( VAR="val ue")
n=Fil e("foo.c")
print (env. Get Bui | dPat h([ n, "sub/dir/$VAR']))

Would print the following file names:

% scons -Q
['foo.c', 'sub/dir/value']
scons: ~.' is up to date.

Thereis also afunction version of Get Bui | dPat h which can be called without an Envi r onnent ; that uses the
default SCons Envi r onment to do substitution on any string arguments.

Iy
=== SCONS 23



6 Dependencies

So far we've seen how SCons handles one-time builds. But one of the main functions of a build tool like SConsisto
rebuild only what is necessary when source files change--or, put another way, SCons should not waste time rebuilding
things that don't need to be rebuilt. You can see this at work simply by re-invoking SCons after building our smple
hel | o example:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

scons: ~.' is up to date

The second time it is executed, SCons realizes that the hel | o program is up-to-date with respect to the current
hel | o. ¢ sourcefile, and avoidsrebuildingit. Y ou can seethismore clearly by namingthehel | o program explicitly
on the command line:

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Note that SConsreports™. ..is up to date" only for target files named explicitly on the command line, to
avoid cluttering the output.

6.1. Deciding When an Input File Has Changed:
the Deci der Function

Another aspect of avoiding unnecessary rebuildsis the fundamental build tool behavior of rebuilding things when an
input file changes, so that the built software is up to date. By default, SCons keeps track of this through a content
signature, or hash, of the contents of each file, although you can easily configure SCons to use the modification times
(or time stamps) instead. Y ou can even write your own Python function for deciding if an input file should trigger
arebuild.



Using Content Signaturesto Decide if a File Has Changed

6.1.1. Using Content Signatures to Decide if a File Has
Changed

By default, SCons uses a cryptographic hash of the file's contents, not the file's modification time, to decide whether
afile has changed. This means that you may be surprised by the default SCons behavior if you are used to the Make
convention of forcing arebuild by updating the file's modification time (using the touch command, for example):

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% touch hello.c

% scons -Q hello

scons: " hello' is up to date

Even though the file's modification time has changed, SCons realizes that the contents of the hel | o. ¢ file have
not changed, and therefore that the hel | o program need not be rebuilt. This avoids unnecessary rebuilds when, for
example, someone rewrites the contents of a file without making a change. But if the contents of the file really do
change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [ CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

Note that you can, if you wish, specify the default behavior of using content signatures explicitly, using the Deci der
function asfollows:

Progran(' hello.c")
Deci der (' content')

You can aso usethe string ' MD5' asasynonym for' cont ent' when caling the Deci der function - this older
name is deprecated since SCons now supports a choice of hash functions, not just the MD5 function.

6.1.1.1. Ramifications of Using Content Signatures

Using content signatures to decide if an input file has changed has one surprising benefit: if a source file has been
changed in such a way that the contents of the rebuilt target file(s) will be exactly the same as the last time the file
was built, then any "downstream” target files that depend on the rebuilt-but-not-changed target file actually need not
be rebuilt.

So if, for example, a user were to only change acomment in ahel | o. c file, then the rebuilt hel | o. o file would
be exactly the same as the one previously built (assuming the compiler doesn't put any build-specific information in
the object file). SCons would then realize that it would not need to rebuild the hel | o program asfollows:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [ CHANGE A COWENT I N hel |l o. c]
% scons -Q hello

cc -o hello.o -c hello.c

Iy
=== SCONS 25



Using Time Stampsto Decide If a File Has Changed

scons: " hello' is up to date.

In essence, SCons "short-circuits' any dependent builds when it realizes that a target file has been rebuilt to exactly
the samefile asthe last build. This does take some extra processing time to read the contents of thetarget (hel | 0. 0)
file, but often saves time when the rebuild that was avoided would have been time-consuming and expensive.

6.1.2. Using Time Stamps to Decide If a File Has
Changed

If you prefer, you can configure SCons to use the modification time of afile, not the file contents, when deciding if a
target needs to be rebuilt. SCons gives you two ways to use time stamps to decide if an input file has changed since
the last time atarget has been built.

Themost familiar way to usetime stampsistheway Make does: that is, have SCons decide that atarget must be rebuilt
if a source file's modification time is newer than the target file. To do this, call the Deci der function asfollows:

oject (' hello.c")
Deci der (' ti nest anp- newer ')

This makes SCons act like Make when afile's modification timeis updated (using the touch command, for example):

% scons -Q hello.o

cc -0 hello.o -c hello.c
% touch hello.c

% scons -Q hello.o

cc -0 hello.o -c hello.c

And, in fact, because this behavior is the same as the behavior of Make, you can also use the string ' make' asa
synonym for' ti mest anp- newer' when caling the Deci der function:

oject (' hello.c")
Deci der (' make')

One drawback to using times stamps exactly like Make is that if an input file's modification time suddenly becomes
older than a target file, the target file will not be rebuilt. This can happen if an old copy of a source file is restored
from a backup archive, for example. The contents of the restored file will likely be different than they were the last
time a dependent target was built, but the target won't be rebuilt because the modification time of the source file is
not newer than the target.

Because SCons actually storesinformation about the source files' time stamps whenever atarget is built, it can handle
this situation by checking for an exact match of the sourcefile time stamp, instead of just whether or not the sourcefile
is newer than the target file. To do this, specify the argument ' t i mest anp- mat ch' when calling the Deci der
function:

oject (' hello.c")
Deci der (' ti mestanp-mat ch')

When configured this way, SCons will rebuild atarget whenever a source file's modification time has changed. So if
weusethet ouch -t option to change the modification time of hel | 0. ¢ to an old date (January 1, 1989), SCons
will still rebuild the target file:

Iy
=== SCONS 26



Deciding If aFile Has Changed Using Both MD
Signatures and Time Stamps

% scons -Q hello.o

cc -o hello.o -c hello.c

% touch -t 198901010000 hell o.c
% scons -Q hello.o

cc -o hello.o -c hello.c

In general, the only reason to prefer t i mest anp- newer instead of t i nest anp- nat ch, would be if you have
some specific reason to require this Make-like behavior of not rebuilding atarget when an otherwise-modified source
fileisolder.

6.1.3. Deciding If a File Has Changed Using Both MD
Sighatures and Time Stamps

As a performance enhancement, SCons provides a way to use a file's content signature, but to read those contents
only when thefil€'s timestamp has changed. To do this, call the Deci der functionwith' cont ent - ti mest anp'
argument as follows:

Program(' hello.c")
Deci der (' content-ti nmestanp')

So configured, SCons will still behave like it does when using Deci der (' content'):

% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o
% touch hello.c
% scons -Q hello
scons: " hello' is up to date
%edit hello.c
[ CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o

However, the second call to SCons in the above output, when the build is up-to-date, will have been performed by
simply looking at the modification time of the hel | 0. ¢ file, not by opening it and performing a signature calcuation
on its contents. This can significantly speed up many up-to-date builds.

The only drawback to using Deci der (' content-ti mestanp') isthat SCons will not rebuild a target file
if a source file was modified within one second of the last time SCons built the file. While most developers are
programming, thisisn't aproblem in practice, sinceit's unlikely that someone will have built and then thought quickly
enough to make a substantive change to a source file within one second. Certain build scripts or continuous integration
tools may, however, rely on the ability to apply changes to files automatically and then rebuild as quickly as possible,
inwhich case use of Deci der (' content-ti mestanp') may not be appropriate.

6.1.4. Extending SCons: Writing Your Own Custom
Deci der Function

The different string values that we've passed to the Deci der function are essentially used by SCons to pick one of
several specific internal functions that implement various ways of deciding if a dependency (usualy a source file)

Iy
=== SCONS 27



Extending SCons. Writing Y our Own Custom Deci der
Function

has changed since a target file has been built. As it turns out, you can also supply your own function to decide if a
dependency has changed.

For example, suppose we have an input file that contains a lot of data, in some specific regular format, that is used
to rebuild alot of different target files, but each target file really only depends on one particular section of the input
file. We'd like to have each target file depend on only its section of the input file. However, since the input file may
contain alot of data, we want to open theinput file only if itstimestamp has changed. This could be donewith acustom
Deci der function that might look something like this:

Progran(' hello.c")
def decide_if_changed(dependency, target, prev_ni, repo_node=None):
i f dependency.get tinmestanp() != prev_ni.tinmestanp:
dep = str(dependency)
tgt = str(target)
if specific_part_of file_has_changed(dep, tgt):
return True
return Fal se
Deci der (deci de_i f _changed)

Note that in the function definition, the dependency (input file) is the first argument, and then the t ar get . Both
of these are passed to the functions as SCons Node objects, which we convert to strings using the Pythonst r () .

The third argument, pr ev_ni , is an object that holds the content signature and/or timestamp information that was
recorded about the dependency the last time the target was built. A pr ev_ni object can hold different information,
depending on the type of thing that the dependency argument represents. For normal files, the pr ev_ni object
has the following attributes:

csig
The content signature: a cryptgraphic hash, or checksum, of the file contents of the dependency file the last
timethet ar get wasbuilt.

si ze
The sizein bytes of thedependency file the last time the target was built.

ti mestanp
The modification time of the dependency filethelast timethet ar get was built.

These attributes may not be present at the time of the first run. Without any prior build, no targets have been created
and no . sconsi gn DB file exists yet. So you should always check whether the pr ev_ni attribute in question is
available (use the Python hasat t r method or at r y-except block).

Thefourthargumentr epo_node isthe Node touseif itisnot Nonewhen comparing Bui | dI nf 0. Thisistypically
only set when the target node only existsinaReposi t ory

Note that ignoring some of the argumentsin your custom Deci der function isa perfectly normal thing to do, if they
don't impact the way you want to decide if the dependency file has changed.

We finally present a small example for acsi g-based decider function. Note how the signature information for the
dependency filehasto get initialized viaget _csi g during each function call (thisis mandatory!).

env = Environment ()

Iy
=== SCONS 28



Mixing Different Ways of Deciding If aFile Has
Changed

def config file_decider(dependency, target, prev_ni, repo_node=None):
i mport os.path

# W always have to init the .csig val ue..
dep_csi g = dependency. get _csi g()
# .csig may not exist, because no target was built yet..
if not prev_ni.hasattr("csig"):
return True
# Target file may not exist yet
if not os.path.exists(str(target.abspath)):
return True
if dep_csig !'= prev_ni.csig:
# Some change on source file => update installed one
return True
return Fal se

def update file():
with open("test.txt", "a") as f:
f.wite("sone |[ine\n")

update file()

# Activate our own decider function
env. Deci der (config file_decider)

env.Install ("install", "test.txt")

6.1.5. Mixing Different Ways of Deciding If a File Has
Changed

The previous examples have all demonstrated calling the global Deci der function to configure al dependency
decisions that SCons makes. Sometimes, however, you want to be able to configure different decision-making for
different targets. When that's necessary, you can use the env. Deci der method to affect only the configuration
decisions for targets built with a specific construction environment.

For example, if we arbitrarily want to build one program using content signatures and another using file modification
times from the same source we might configure it this way:

envl Envi ronnment (CPPPATH = ['."'])

env2 envl. Cl one()

env2. Deci der (' ti mest anp-match')

envl. Progran{(' prog-content', 'programl.c')
env2. Progran{' prog-ti mestanp', 'progranR.c')

If both of the programsinclude the samei nc. h file, then updating the modification time of i nc. h (using the touch
command) will cause only pr og-ti mest anp to be rebuilt:

% scons -Q
cc -0 progranil.o -c -1. progranil.c

Iy
=== SCONS 29



Implicit Dependencies: The $CPPPATH Construction
Variable

CC -0 prog-content programl.o

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

% touch inc.h

% scons -Q

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

6.2. Implicit Dependencies: The $CPPPATH
Construction Variable

Now suppose that our "Hello, World!" program actually has an #i ncl ude lineto include the hel | o. h filein the
compilation:

#i ncl ude <hel |l 0. h>

i nt
mai n()
{
printf("Hello, %!\n", string);
}

And, for completeness, the hel | o. h filelooks like this:

#define string “wor | d"

In this case, we want SCons to recognize that, if the contents of the hel | 0. h file change, the hel | o program must
be recompiled. To do this, we need to modify the SConst r uct filelike so:

Program(' hello.c', CPPPATH=".")

The $CPPPATH value tells SCons to look in the current directory (' . ') for any filesincluded by C source files (. ¢
or . h files). With this assignment in the SConst r uct file:

% scons -Q hello

cc -0 hello.o -c -I. hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

% [ CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello

cc -0 hello.o -c -I. hello.c

cc -0 hello hello.o

First, noticethat SConsconstructedthe- | . argumentfromthe' . ' inthe SCPPPATH variable so that the compilation
would find the hel | 0. h filein the local directory.

Second, realize that SCons knows that the hel | o program must be rebuilt because it scans the contents of the
hel | o. c filefor the#i ncl ude linesthat indicate another file is being included in the compilation. SCons records

Iy
=== SCONS 30



Caching Implicit Dependencies

these as implicit dependencies of the target file, Consequently, when the hel | 0. h file changes, SCons realizes that
the hel | o. ¢ file includes it, and rebuilds the resulting hel | o program that depends on both the hel | 0. ¢ and
hel | 0. hfiles.

Likethe$LI BPATHvariable, the $CPPPATH variable may bealist of directories, or astring separated by the system-
specific path separation character (":' on POSIX/Linux, ';' on Windows). Either way, SCons creates the right command-
line options so that the following example:

Program(' hello.c', CPPPATH = ['include', '/home/project/inc'])

Will look like this on POSIX or Linux:

% scons -Q hello
cc -0 hello.o -c -linclude -1/hone/project/inc hello.c
cc -0 hello hello.o

And like this on Windows:

C.\>scons -Q hell o. exe

cl /Fohello.obj /c hello.c /nologo /1include /I\home\project\inc
link /nol ogo /QUT: hel | 0. exe hel | 0. obj

enbedMani f est ExeCheck(target, source, env)

6.3. Caching Implicit Dependencies

Scanning each file for #i ncl ude lines does take some extra processing time. When you're doing a full build of a
large system, the scanning time is usually avery small percentage of the overall time spent on the build. Y ou're most
likely to notice the scanning time, however, when you rebuild all or part of alarge system: SConswill likely take some
extratime to "think about" what must be built before it issues the first build command (or decides that everything is
up to date and nothing must be rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential time lost to tracking down subtle
problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while SCons scans files can annoy
individual developerswaiting for their builds to finish. Consequently, SCons letsyou cache the implicit dependencies
that its scanners find, for use by later builds. You can do this by specifying the - - i npl i ci t - cache option on
the command line:

% scons -Q --inplicit-cache hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

If you don't want to specify - -i npl i ci t - cache on the command line each time, you can make it the default
behavior for your build by setting thei npl i cit _cache optioninan SConscri pt file:

Set Option('inplicit_cache', 1)

SCons does not cache implicit dependencies like this by default because the - -i npl i ci t - cache causes SCons
to simply use the implicit dependencies stored during the last run, without any checking for whether or not
those dependencies are still correct. Specificaly, thismeans--i npl i ci t - cache instructs SCons to not rebuild
"correctly" in the following cases:

Iy
=== SCONS 31



The--inplicit-deps-changed Option

e When--inplicit-cache isused, SCons will ignore any changes that may have been made to search paths
(like $CPPPATH or $LI BPATH,). This can lead to SCons not rebuilding afile if a change to $CPPPATH would
normally cause a different, same-named file from a different directory to be used.

* When--inplicit-cacheisused, SConswill not detect if asame-named file has been added to adirectory that
is earlier in the search path than the directory in which the file was found last time.

6.3.1. The--inplicit-deps-changed Option

When using cached implicit dependencies, sometimes you want to "start fresh" and have SCons re-scan the files for
which it previously cached the dependencies. For example, if you have recently installed a new version of external
code that you use for compilation, the external header files will have changed and the previously-cached implicit
dependencies will be out of date. Y ou can update them by running SConswiththe- - i npl i ci t - deps- changed
option:

% scons -Q --inplicit-deps-changed hell o
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

In this case, SCons will re-scan all of the implicit dependencies and cache updated copies of the information.

6.3.2. The--inplicit-deps-unchanged Option

By default when caching dependencies, SCons notices when a file has been modified and re-scans the file for any
updated implicit dependency information. Sometimes, however, you may want to force SCons to use the cached
implicit dependencies, even if the sourcefiles changed. This can speed up abuild for example, when you have changed
your sourcefilesbut know that you haven't changed any #i ncl ude lines. Inthiscase, youcanusethe--i nplicit -
deps- unchanged option:

% scons -Q --inplicit-deps-unchanged hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Inthiscase, SConswill assumethat the cached implicit dependencies are correct and will not bother to re-scan changed
files. For typical builds after small, incremental changesto sourcefiles, the savings may not be very big, but sometimes
every bit of improved performance counts.

6.4. Explicit Dependencies: the Depends
Function

Sometimes a file depends on another file that is not detected by an SCons scanner. For this situation, SCons allows
you to specific explicitly that one file depends on another file, and must be rebuilt whenever that file changes. This
is specified using the Depends method:

hell o = Progran(' hello.c')
Depends(hell o, 'other file")

Iy
=== SCONS 32



Dependencies From External Files: the Par seDepends
Function

% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date
% edit other file
[ CHANGE THE CONTENTS OF ot her fil e]
% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o

Note that the dependency (the second argument to Depends) may also be a list of Node objects (for example, as
returned by acall to a Builder):

hell o = Program(' hello.c")
goodbye = Progran(' goodbye. c')
Depends(hel | o, goodbye)

in which case the dependency or dependencies will be built before the target(s):

% scons -Q hello

cc -c goodbye.c -o goodbye. o
cc -0 goodbye goodbye. o

cc -c hello.c -o hello.o

cc -0 hello hello.o

6.5. Dependencies From External Files: the
Par seDepends Function

SCons has built-in scanners for a number of languages. Sometimes these scanners fail to extract certain implicit
dependencies due to limitations of the scanner implementation.

The following example illustrates a case where the built-in C scanner is unable to extract the implicit dependency
on a header file.

#defi ne FOO HEADER <f 00. h>
#i ncl ude FOO_HEADER

int main() {
return FOO
}

% scons -Q

cc -0 hello.o -¢c -1. hello.c
cc -o hello hello.o

% [ CHANGE CONTENTS OF f 00. h]
% scons -Q

Iy
=== SCONS 33



Ignoring Dependencies. the | gnor e Function

scons: ~.' is up to date.

Apparently, the scanner does not know about the header dependency. Not being a full-fledged C preprocessor, the
scanner does not expand the macro.

In these cases, you may also use the compiler to extract the implicit dependencies. Par seDepends can parse the
contents of the compiler output in the style of Make, and explicitly establish all of the listed dependencies.

Thefollowing example uses Par seDepends to process acompiler generated dependency file which is generated as
aside effect during compilation of the object file:

obj = Cbject('hello.c', CCFLAGS='-MD -Mr hello.d , CPPPATH='.')
Si deEffect (' hell o.d', obj)

Par seDepends(' hel l 0.d")

Program(' hell o', obj)

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c
cc -0 hello hello.o

% [ CHANGE CONTENTS OF fo0. h]

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c

Parsing dependencies from a compiler-generated . d file has a chicken-and-egg problem, that causes unnecessary
rebuilds:

% scons -Q

cc -0 hello.o -c -MD -MF hello.d -I. hello.c

cc -0 hello hello.o

% scons -Q --debug=expl ai n

scons: rebuilding “hello.o because foo.h' is a new dependency

cc -0 hello.o -c -MD -MF hello.d -1. hello.c
% scons -Q
scons: ~.' is up to date.

In thefirst pass, the dependency file is generated while the object fileis compiled. At that time, SCons does not know
about the dependency on f 00. h. In the second pass, the object file is regenerated because f 00. h is detected as a
new dependency.

Par seDepends immediately reads the specified file at invocation time and just returns if the file does not exist. A
dependency file generated during the build process is not automatically parsed again. Hence, the compiler-extracted
dependencies are not stored in the signature database during the same build pass. This limitation of Par seDepends
leads to unnecessary recompilations. Therefore, Par seDepends should only be used if scanners are not available
for the employed language or not powerful enough for the specific task.

6.6. Ignoring Dependencies: the | gnor e
Function

Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you would tell
SCons specifically to ignore a dependency using the | gnor e function as follows:

Iy
=== SCONS 34



Order-Only Dependencies: the Requi r es Function

hel | o_obj =Cbj ect (' hello.c")
hell o = Program hell o_obj)
I gnore(hello_obj, '"hello.h")

% scons -Q hello
cc -c -0 hello.o hello.c
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date.
%edit hello.h
[ CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello
scons: " hello' is up to date.

Now, the above example is alittle contrived, because it's hard to imagine a real-world situation where you wouldn't
want to rebuild hel | o if the hel | 0. h file changed. A more redlistic example might be if the hel | o program is
being built in adirectory that is shared between multiple systems that have different copies of the st di 0. h include
file. In that case, SCons would notice the differences between the different systems' copies of st di 0. h and would
rebuild hel | o each time you change systems. Y ou could avoid these rebuilds as follows:

hell o = Progran(' hello.c', CPPPATH=['/usr/include'])
| gnore(hello, '/usr/include/stdio.h")

| gnor e can aso be used to prevent a generated file from being built by default. Thisis dueto the fact that directories
depend on their contents. So to ignore a generated file from the default build, you specify that the directory should
ignorethe generated file. Notethat thefilewill still bebuilt if the user specifically requeststhetarget on sconscommand
ling, or if thefile is a dependency of another file which is requested and/or is built by default.

hel | o_obj =Cbj ect (' hell o.c")
hell o = Program(hell o_obj)
I gnore('.",[hello, hello_obj])

% scons -Q

scons: ~.' is up to date.

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date.

6.7. Order-Only Dependencies: the Requi r es
Function

Occasionaly, it may be useful to specify that a certain file or directory must, if necessary, be built or created before
some other target is built, but that changes to that file or directory do not require that the target itself be rebuilt. Such

Iy
=== SCONS 35



Order-Only Dependencies: the Requi r es Function

arelationship is called an order-only dependency because it only affects the order in which things must be built--the
dependency before the target--but it is not a strict dependency relationship because the target should not change in
response to changes in the dependent file.

For example, suppose that you want to create a file every time you run a build that identifies the time the build was
performed, the version number, etc., and which isincluded in every program that you build. The version file's contents
will change every build. If you specify a normal dependency relationship, then every program that depends on that
file would be rebuilt every time you ran SCons. For example, we could use some Python codeinaSConst r uct file
to create anew ver si on. c file with a string containing the current date every time we run SCons, and then link a
program with the resulting object file by listing ver si on. ¢ in the sources:

i mport tine

version_c_text =

char *date = "%";
"ttoptinme.ctinme(tinme.tinme())
open('version.c', 'wW).wite(version_c_text)
hell o = Program([' hello.c', 'version.c'])

If welist ver si on. c as an actua source file, though, then the ver si on. o filewill get rebuilt every time we run
SCons (because the SConst r uct fileitself changes the contents of ver si on. ¢) and the hel | o executable will
get re-linked every time (because the ver si on. o file changes):

% scons -Q hello

cc -0 hello.o -c hello.c

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o

(Notethat for the above example to work, we sleep for one second in between each run, so that the SConst r uct file
will createaver si on. c filewith atime string that's one second later than the previous run.)

One solution isto usethe Requi r es function to specify that thever si on. o must be rebuilt beforeit is used by the
link step, but that changesto ver si on. o should not actually cause the hel | o executable to be re-linked:

i mport time

version_c_text =

char *date = "%";
"ttt time.ctime(time.time())
open('version.c', "W ).wite(version_c_text)

versi on_obj = Object('version.c')

Iy
=== SCONS 36



The Al waysBui | d Function

hell o = Progran(' hello.c',
LI NKFLAGS = str(version_obj[0]))

Requi res(hell o, version_obj)

Notice that because we can no longer list ver si on. ¢ asone of the sourcesfor the hel | o program, we haveto find
some other way to get it into the link command line. For this example, we're cheating a bit and stuffing the object
file name (extracted fromver si on_obj list returned by the Qbj ect builder cal) into the $LI NKFLAGS variable,
because $L1 NKFLAGS is aready included in the $L1 NKCOMcommand line.

With these changes, we get the desired behavior of only re-linking the hel | o executable when the hel | 0. ¢ has
changed, even though the ver si on. o is rebuilt (because the SConst ruct file still changes the ver si on. ¢
contents directly each run):

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date
% sl eep 1

% [ CHANGE THE CONTENTS OF hel |l o. c]
% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date

6.8. The Al waysBui | d Function

How SCons handles dependencies can also be affected by the Al waysBui | d method. When afile is passed to the
Al waysBui | d method, like so:

hell o = Progran(' hello.c')
Al waysBui | d( hel | 0)

Then the specified target file (hel | o in our example) will always be considered out-of-date and rebuilt whenever that
target file is evaluated while walking the dependency graph:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

cc -0 hello hello.o

The Al waysBui | d function has a somewhat misleading name, because it does not actually mean the target file will
be rebuilt every single time SCons is invoked. Instead, it means that the target will, in fact, be rebuilt whenever the

Iy
=== SCONS 37



The Al waysBui | d Function

target file is encountered while evaluating the targets specified on the command line (and their dependencies). So
specifying some other target on the command line, atarget that does not itself depend on the Al waysBui | d target,
will still be rebuilt only if it's out-of-date with respect to its dependencies:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello.o

scons: " hello.o'" is up to date

Iy
=== SCONS 38



7 Environments

An environment is a collection of values that can affect how a program executes. SCons distinguishes between
three different types of environments that can affect the behavior of SCons itself (subject to the configuration in the
SConscri pt files), aswell asthe compilers and other tools it executes:

External Environment
The External Environment isthe set of variablesin the user's environment at the time the user runs SCons. These
variables are not automatically part of an SCons build but are available to be examined if needed. See Section 7.1,
“Using Values From the External Environment”, below.

Construction Environment
A Construction Environment is a distinct object created within a SConscr i pt file and which contains values
that affect how SCons decides what action to use to build a target, and even to define which targets should
be built from which sources. One of the most powerful features of SCons is the ability to create multiple
construction environments, including the ability to clone a new, customized construction environment from an
existing construction environment. See Section 7.2, “Construction Environments”, below.

Execution Environment
An Execution Environment isthe values that SCons sets when executing an external command (such asacompiler
or linker) to build one or more targets. Note that thisis not the same as the external environment (see above). See
Section 7.3, “Controlling the Execution Environment for Issued Commands’, below.

Unlike Make, SCons does not automatically copy or import val ues between different environments (with the exception
of explicit clones of construction environments, which inherit the values from their parent). Thisisadeliberate design
choice to make sure that builds are, by default, repeatable regardless of the values in the user's external environment.
This avoids a whole class of problems with builds where a developer's local build works because a custom variable
setting causes a different compiler or build option to be used, but the checked-in change breaks the official build
because it uses different environment variable settings.

Note that the SConscr i pt writer can easily arrange for variables to be copied or imported between environments,
and this is often very useful (or even downright necessary) to make it easy for developers to customize the build in
appropriate ways. The point is not that copying variables between different environmentsis evil and must aways be
avoided. Instead, it should be up to the implementer of the build system to make conscious choices about how and
when to import avariable from one environment to another, making informed decisions about striking the right balance
between making the build repeatable on the one hand and convenient to use on the other.



Using Values From the External Environment

Sidebar: Python Dictionaries

If you're not familiar with the Python programming language, we need to talk a little bit about the Python
dictionary data type. A dictionary (also known by terms such as mapping, associative array and key-value
store) associates keys with values, such that asking the dict about a key gives you back the associated value
and assigning to a key creates the association - either a new setting if the key was unknown, or replacing the
previous association if the key was already in the dictionary. Vaues can be retrieved using item access (the
key name in square brackets ([ ] )), and dictionaries also provide a method named get which responds with
adefault value, either None or avalue you supply as the second argument, if the key is not in the dictionary,
which avoidsfailing in that case. The syntax for initializing a dictionary uses curly braces ({ } ). Here are some
simple examples (inspired by those in the official Python tutorial) using syntax that indicates interacting with
the Python interpreter (>>> isthe interpreter prompt) - you can try these out:

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['gquido'] = 4127

>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> print(tel)

{'jack': 4098, 'quido': 4127, 'irv': 4127}
>>> 'guido’ in tel

Tr ue

>>> print(tel['jack'])

Traceback (nost recent call |ast):
File "<stdin>", line 1, in <nmodul e>

KeyError: 'jack'
>>> print(tel.get('jack'))
None

Construction environments are written to behave like aPython dictionary, and the SENV construction variablein
aconstruction environment isaPython dictionary. The0os. envi r on value that Python usesto make available
the external environment is also a dictionary. We will need these concepts in this chapter and throughout the
rest of this guide.

7.1. Using Values From the External
Environment

The external environment variable settings that the user hasin force when executing SCons are available in the Python
0s. envi ron dictionary. That syntax means the envi r on attribute of the os module. In Python, to access the
contents of amoduleyou must firsti npor t it-soyouwouldincludethei nport os statementtoany SConscri pt
file in which you want to use values from the user's external environment.

i mport os

print("Shell is", os.environ['SHELL'])

b4

SCONS 40



Construction Environments

More usefully, you can use the 0s. envi ron dictionary in your SConscri pt files to initialize construction
environments with values from the user's external environment. Read on to the next section for information on how
to do this.

7.2. Construction Environments

It israre that all of the softwarein alarge, complicated system needs to be built exactly the same way. For example,
different source files may need different options enabled on the command line, or different executable programs need
to be linked with different libraries. SCons accommodates these different build requirements by allowing you to create
and configure multiple construction environments that control how the softwareis built. A construction environment
isan object that has anumber of associated construction variables, each with aname and avalue, just like adictionary.
(A construction environment also has an attached set of Bui | der methods, about which we'll learn more later.)

7.2.1. Creating a Construction Environment: the
Envi r onment Function

A construction environment is created by the Envi r onment method:
env = Environnent ()

By default, SConsinitializes every new construction environment with aset of construction variables based on thetools
that it finds on your system, plus the default set of builder methods necessary for using those tools. The construction
variables are initialized with values describing the C compiler, the Fortran compiler, the linker, etc., as well as the
command lines to invoke them.

When you initialize a construction environment you can set the values of the environment's construction variables to
control how a program is built. For example:

env = Environnent (CC=' gcc', CCFLAGS='-Q2')
env. Progran(' foo.c')

The construction environment in this example is still initialized with the same default construction variable values,
except that the user has explicitly specified use of the GNU C compiler gec, and that the - O2 (optimization level two)
flag should be used when compiling the object file. In other words, the explicit initializations of $CC and $CCFLAGS
override the default valuesin the newly-created construction environment. So arun from thisexamplewould look like:

% scons -Q

gcc -0 foo.o -c -2 foo.c
gcc -o foo foo.o

7.2.2. Fetching Values From a Construction Environment

Y ou can fetch individual values, known as Construction Variabl es, using the same syntax used for accessing individual
named itemsin a Python dictionary:

env = Environment ()
print("CCis: %" %env['CC])

Iy
=== SCONS 41



Fetching Values From a Construction Environment

print("LATEX is: %" % env.get (' LATEX , None))

This example SConst r uct file doesn't contain instructions for building any targets, but because it's still a valid
SConst r uct it will be evaluated and the Python pri nt calls will output the values of $CC and SLATEX for us
(remember using the . get () method for fetching means we get a default value back, rather than a failure, if the
variableis not set):

% scons -Q

CCis: cc
LATEX is: None
scons: ' is up to date.

A construction environment is actually an object with associated methods and attributes. If you want to have direct
access to only the dictionary of construction variables you can fetch this using the env. Di cti onary method
(although it'srarely necessary to use this method):

env = Environnent (FOO=' foo', BAR='bar')

cvars = env.Dictionary()

for key in ["OBISUFFI X', 'LIBSUFFI X , 'PROGSUFFI X ]:
print("key = %, value = %" % (key, cvars[key]))

This SConst r uct filewill print the specified dictionary items for us on POSIX systems as follows:

% scons -Q

key = OBISUFFI X, value = .0
key = LIBSUFFI X, value = .a
key = PROGSUFFI X, val ue =
scons: ' is up to date.

And on Windows:

C.\>scons -Q

key = OBISUFFI X, val ue = . obj
key = LIBSUFFI X, value = .lib
key = PROGSUFFI X, val ue = .exe
scons: .' is up to date.

If you want to loop and print the values of all of the construction variables in a construction environment, the Python
code to do that in sorted order might look something like:

env = Environnent ()
for itemin sorted(env.Dictionary().itens()):
print("construction variable = '%', value = '"%'" %item

It should be noted that for the previous example, there is actually a construction environment method that does the
same thing more simply, and tries to format the output nicely aswell:

env = Environment ()
print (env. Dunp())

Iy
=== SCONS 42



Expanding Va ues From a Construction Environment: the
subst Method

7.2.3. Expanding Values From a Construction
Environment: the subst Method

Another way to get information from a construction environment is to use the subst method on a string containing

$ expansions of construction variable names. As a simple example, the example from the previous section that used
env[' CC ] tofetch the value of $CC could also be written as:

env = Environment ()
print("CCis: %" % env.subst('$CC ))

One advantage of using subst to expand stringsisthat construction variablesin the result get re-expanded until there
are no expansions left in the string. So asimple fetch of avalue like $CCCOM

env = Environment (CCFLAGS=' - DFQO )
print("CCCOMis: %" % env[' CCCOM ])

Will print the unexpanded value of $CCCOM showing us the construction variables that still need to be expanded:

% scons -Q
CCCOM i s: $CC $CCFLAGS $CPPFLAGS $ CPPDEFFLAGS $ CPPI NCFLAGS -c -0 $TARGET $SOURCES
scons: ~.' is up to date.

Calling the subst method on $CCOM however:

env = Environnent ( CCFLAGS=' - DFQO )
print("CCCOMis: %" % env.subst (' $CCCOM ))

Will recursively expand all of the construction variables prefixed with $ (dollar signs), showing us the final outpuit:

% scons -Q
CCCOM is: gcc -DFOO -c -0
scons: ~.' is up to date.

Note that because we're not expanding this in the context of building something there are no target or source files for
$TARGET and $SOURCES to expand.

7.2.4. Handling Problems With Value Expansion

If a problem occurs when expanding a construction variable, by default it is expandedto' ' (an empty string), and
will not cause scons to fail.

env = Environmnent ()
print("value is: 9%"% nv.subst( '->$M SSI NG-' ))

Iy
=== SCONS 43



Contralling the Default Construction Environment: the
Def aul t Envi ronnment Function

% scons -Q
val ue is: -><-
scons: ' is up to date.

This default behaviour can be changed using the Al | owSubst Except i ons function. When a problem occurswith
avariable expansion it generates an exception, and the Al | owSubst Except i ons function controls which of these
exceptions are actually fatal and which are allowed to occur safely. By default, NameEr r or and | ndexEr r or are
thetwo exceptionsthat are allowed to occur: soinstead of causing sconsto fail, these are caught, the variable expanded
to' "' and scons execution continues. To require that all construction variable names exist, and that indexes out of
range are not allowed, call Al | owSubst Except i ons with no extra arguments.

Al | owSubst Except i ons()
env = Environnent ()
print("value is: %"%nv.subst( '->$M SSING-"' ))

% scons -Q

scons: *** NaneError “nanme 'M SSING is not defined trying to eval uate ~$M SSI NG
File "/homel/ ny/ project/SConstruct”, line 3, in <nmodul e>

This can aso be used to allow other exceptions that might occur, most usefully with the ${. ..} construction
variable syntax. For example, thiswould allow zero-division to occur in avariable expansion in addition to the default
exceptions alowed

Al | owSubst Except i ons( | ndexError, NameError, ZeroDi visionError)
env = Environment ()
print("value is: %"%nv.subst( '->${1 / 0}<-' ))

% scons -Q
val ue is: -><-
scons: ' is up to date.

If Al | owSubst Excepti ons iscalled multiple times, each call completely overwrites the previous list of allowed
exceptions.

7.2.5. Controlling the Default Construction Environment:
the Def aul t Envi r onnment Function

All of the Bui | der functions that we've introduced so far, like Programand Li br ary, use a construction
environment that contains settings for the various compilers and other tools that SCons configures by default, or
otherwise knows about and has discovered on your system. If not invoked as methods of a specific construction
environment, they use the default construction environment The goal of the default construction environment is to
make many configurations"just work" to build software using readily available tools with aminimum of configuration
changes.

If needed, you can control the default construction environment by using the Def aul t Envi r onment function to
initialize various settings by passing them as keyword arguments:

Def aul t Envi ronment (CC='/ usr/ | ocal / bi n/ gcc')

Iy
=== SCONS 44



Multiple Construction Environments

When configured as above, all calls to the Pr ogr amor Obj ect Builder will build object files with the / usr/
| ocal / bi n/ gcc compiler.

The Def aul t Envi r onnment function returns the initialized default construction environment object, which can
then be manipulated like any other construction environment (note that the default environment works like asingleton
- it can have only one instance - so the keyword arguments are processed only on thefirst call. On any subsequent call
the existing object isreturned). So the following would be equival ent to the previous example, setting the $CCvariable
to/ usr/ 1 ocal / bi n/ gcc but as a separate step after the default construction environment has been initialized:

def _env = Defaul t Envi ronnment ()
def _env['CC ] = '/usr/local/bin/gcc'

One very common use of the Def aul t Envi r onnment functionisto speed up SConsinitialization. As part of trying
to make most default configurations "just work," SCons will actually search the local system for installed compilers
and other utilities. This search can take time, especially on systems with slow or networked file systems. If you know
which compiler(s) and/or other utilities you want to configure, you can control the search that SCons performs by
specifying some specific tool modules with which to initialize the default construction environment:

def _env = Defaul t Envi ronment (tool s=['gcc', 'gnulink'], CC='/usr/local/bin/gcc')

So the above examplewouldtell SConsto explicitly configure thedefault environment to useitsnorma GNU Compiler
and GNU Linker settings (without having to search for them, or any other utilities for that matter), and specifically to
use the compiler found at / usr/ | ocal / bi n/ gcc.

7.2.6. Multiple Construction Environments

The real advantage of construction environments is that you can create as many different ones as you need, each
tailored to a different way to build some piece of software or other file. If, for example, we need to build one program
with the - O2 flag and another with the - g (debug) flag, we would do thislike so:

opt
dbg

Envi r onment ( CCFLAGS=' - Q2" )
Envi r onnent ( CCFLAGS=' -g' )

opt. Program(' foo', 'foo.c')

dbg. Program(' bar', 'bar.c')

% scons -Q

CC -0 bar.o -c -g bar.c
CC -0 bar bar.o

cc -o foo.o -c -2 foo.c
cc -o foo foo.o

We can even use multiple construction environments to build multiple versions of asingle program. If you do this by

simply trying to use the Pr ogr ambuilder with both environments, though, like this:

opt
dbg

Envi ronnent ( CCFLAGS=' - 2" )
Envi r onnment ( CCFLAGS=' - g')

Iy
=== SCONS 45



Making Copies of Construction Environments; the
Cl one Method

opt. Program(' foo', 'foo.c')

dbg. Program(* foo', 'foo.c')

Then SCons generates the following error:

% scons -Q

scons: *** Two environnents with different actions were specified for the same target:

File "/home/ ny/ project/SConstruct”, line 6, in <nmodul e>

Thisis because thetwo Pr ogr amcalls have each implicitly told SCons to generate an object file named f 0o. o, one
with a $CCFLAGS value of - @2 and one with a $CCFLAGS value of - g. SCons can't just decide that one of them
should take precedence over the other, so it generates the error. To avoid this problem, we must explicitly specify that
each environment compilef 0o. ¢ to a separately-named object file using the Cbj ect builder, like so:

opt = Environnent (CCFLAGS=' - Q2')
dbg = Envi ronnment (CCFLAGS=' -g')
o = opt.bject('foo-opt’', 'foo.c')

opt . Progr an( o)

d = dbg. Obj ect (' foo-dbhg', 'foo.c')
dbg. Pr ogr an( d)

Notice that each call to the Cbj ect builder returns a value, an internal SCons object that represents the object file
that will be built. We then use that object as input to the Pr ogr ambuilder. This avoids having to specify explicitly
the object file namein multiple places, and makes for acompact, readable SConst r uct file. Our SCons output then
looks like:

% scons -Q

cc -o foo-dbg.o -c -g foo.c
cc -o foo-dbg foo-dbg. o

cc -o foo-opt.o -c -2 foo.c
cc -o foo-opt foo-opt.o

7.2.7. Making Copies of Construction Environments: the
Cl one Method

Sometimes you want more than one construction environment to share the same values for one or more variables.
Rather than always having to repeat all of the common variables when you create each construction environment, you
can usetheenv. C one method to create a copy of a construction environment.

Likethe Envi r onnment call that creates a construction environment, the Gl one method takes construction variable
assignments, which will override the values in the copied construction environment. For example, suppose we want
to use gcc to create three versions of a program, one optimized, one debug, and one with neither. We could do this
by creating a "base" construction environment that sets $CC to gcc, and then creating two copies, one which sets
$CCFLAGS for optimization and the other which sets $CCFLAGS for debugging:

env = Environment (CC=' gcc')

Iy
=== SCONS 46

foo



Replacing Vaues: the Repl ace Method

opt = env. C one( CCFLAGS="-Q2")

dbg = env. d one( CCFLAGS="-g')

env. Program(' foo', 'foo.c')

o = opt.hject('foo-opt', 'foo.c')

opt . Progr an( o)

d = dbg. Obj ect (' foo-dbg', 'foo.c')
dbg. Progr am(d)

Then our output would look like:

% scons -Q

gcc -o foo.o -c foo.c

gcc -o foo foo.o

gcc -o foo-dbg.o -c -g foo.c
gcc -o foo-dbg foo-dbg.o

gcc -o foo-opt.o -c -2 foo.c
gcc -o foo-opt foo-opt.o

7.2.8. Replacing Values: the Repl ace Method

Y ou can replace existing construction variable values using the env. Repl ace method:

env = Environment ( CCFLAGS=' - DDEFI NE1' )
env. Repl ace( CCFLAGS=' - DDEFI NE2' )
env. Progran(' foo.c')

The replacing value (- DDEFI NE2 in the above example) completely replaces the value in the construction
environment:

% scons -Q
cc -o foo.o -c -DDEFI NE2 foo.cC
cc -o foo foo.o

You can safely call Repl ace for construction variables that don't exist in the construction environment:

env = Environnent ()
env. Repl ace( NEW VARI ABLE=' xyzzy')
print (" NEW. VARl ABLE = %" % env[' NEW VARI ABLE' ])

In this case, the construction variable simply gets added to the construction environment:

% scons -Q
NEW VARI ABLE = xyzzy
scons: ' is up to date.

Because the variables aren't expanded until the construction environment is actually used to build the targets, and
because SCons function and method calls are order-independent, the last replacement "wins' and is used to build all
targets, regardless of the order in which the calls to Replace() are interspersed with callsto builder methods:

Iy
=== SCONS 47



Setting Values Only If They're Not Already Defined: the
Set Def aul t Method

env = Environment ( CCFLAGS=" - DDEFI NE1' )
print (" CCFLAGS = %" % env[' CCFLAGS'])
env. Program(' foo.c')

env. Repl ace( CCFLAGS=" - DDEFI NE2' )
print (" CCFLAGS = %" % env[' CCFLAGS'])
env. Program(' bar.c')

The timing of when the replacement actually occurs relative to when the targets get built becomes apparent if we run
scons without the - Qoption:

% scons

scons: Readi ng SConscript files ...
CCFLAGS = - DDEFI NE1

CCFLAGS = - DDEFI NE2

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 bar.o -c -DDEFINE2 bar.c

cc -0 bar bar.o

cc -o foo.o -c -DDEFI NE2 foo.cC

cc -o foo foo.o0

scons: done buil ding targets.

Because the replacement occurs while the SConscr i pt files are being read, the $CCFLAGS variable has aready

been set to - DDEFI NE2 by the time the f 00. o0 target is built, even though the call to the Repl ace method does
not occur until later in the SConscri pt file.

7.2.9. Setting Values Only If They're Not Already Defined:
the Set Def aul t Method

Sometimesit's useful to be able to specify that a construction variable should be set to avalue only if the construction
environment does not already have that variable defined Y ou can do thiswiththeenv. Set Def aul t method, which
behaves similarly to the set def aul t method of Python dictionary objects:

env. Set Def aul t (SPECI AL_FLAG=' - extra-option')

Thisis especialy useful when writing your own Tool modulesto apply variables to construction environments.

7.2.10. Appending to the End of Values: the Append
Method

Y ou can append avalue to an existing construction variable using the env. Append method:

env = Environnment ( CPPDEFI NES=[' MY_VALUE' ] )
env. Append( CPPDEFI NES=[ ' LAST' ])
env. Progran(' foo.c')

Iy
=== SCONS 48



Appending Unique Values: the AppendUni que Method

Note $CPPDEFI NES is the preferred way to set preprocessor defines, as SCons will generate the command line
arguments using the correct prefix/suffix for the platform, leaving the usage portable. If you use $CCFLAGS and
$SHCCFLAGS, you need to include them in their final form, which isless portable.

% scons -Q
cc -o foo.o -c -DWMY_VALUE -DLAST foo.c
cc -o foo foo.o0

If the construction variable doesn't already exist, the Append method will create it:

env = Environnent ()

env. Append( NEW VARI ABLE = ' added')

print (" NEW.VARI ABLE = %" %env[' NEW VARI ABLE' ])
Which yields:

% scons -Q
NEW VARI ABLE = added
scons: .' is up to date.

Note that the Append function tries to be "smart" about how the new value is appended to the old value. If both are

strings, the previous and new strings are simply concatenated. Similarly, if both are lists, the lists are concatenated. If,
however, oneisastring and the other isalist, the string is added as a new element to the list.

7.2.11. Appending Unique Values: the AppendUni que
Method

Sometimes it's useful to add a new value only if the existing construction variable doesn't already contain the value.
This can be done using theenv. AppendUni que method:

env. AppendUni que( CCFLAGS=['-g'])

In the above example, the - g would be added only if the $CCFLAGS variable does not aready contain a- g value.

7.2.12. Prepending to the Beginning of Values: the
Pr epend Method

Y ou can prepend a value to the beginning of an existing construction variable using the env. Pr epend method:

env = Envi r onnent ( CPPDEFI NES=[ ' MY_VALUE' ])
env. Prepend( CPPDEFI NES=[ ' FI RST' ])
env. Progran(' foo.c')

SCons then generates the preprocessor define arguments from CPPDEFI NES values with the correct prefix/suffix.
For example on Linux or POSI X, the following arguments would be generated: - DFI RST and - DMY_VALUE

% scons -Q

Iy
=== SCONS 49



Prepending Unique Values: the Pr ependUni que
Method

cc -o foo.o -c -DFI RST - DMY_VALUE f oo. c
cc -o foo foo.o

If the construction variable doesn't already exist, the Pr epend method will createit:

env = Environnent ()
env. Prepend( NEW_VARI ABLE=' added' )
print ("NEW VARI ABLE = %" % env[' NEW VARI ABLE' |)

Which yields:

% scons -Q
NEW VARI ABLE = added
scons: ~.' is up to date.

Likethe Append function, the Pr epend function triesto be "smart" about how the new value is appended to the old
value. If both are strings, the previous and new strings are simply concatenated. Similarly, if both arelists, thelistsare
concatenated. If, however, one is a string and the other isalist, the string is added as a new element to the list.

7.2.13. Prepending Unique Values: the PrependUni que
Method

Sometimesit's useful to add a new value to the beginning of a construction variable only if the existing value doesn't
already contain the to-be-added value. This can be done using theenv. Pr ependUni que method:

env. PrependUni que( CCFLAGS=['-g'])

In the above example, the - g would be added only if the $CCFLAGS variable does not already contain a- g value.

7.2.14. Overriding Construction Variable Settings

Rather than creating a cloned construction environment for specific tasks, you can override or add construction
variables when calling a builder method by passing them as keyword arguments. The values of these overridden or
added variableswill only bein effect when building that target, and will not affect other parts of the build. For example,
if you want to add additional libraries for just one program:

env. Program(' hello', "hello.c', LIBS=['gl"', "glut'])
or generate a shared library with a non-standard suffix:

env. Shar edLi brar y(
target="word",
sour ce="'word. cpp’,
SHLI BSUFFI X=' . ocx' ,
LI BSUFFI XES=[" . ocx' ],

Iy
=== SCONS 50



Controlling the Execution Environment for | ssued
Commands

When overriding this way, the Python keyword arguments in the builder call mean "set to this value". If you want
your override to augment an existing value, you have to take some extra steps. Inside the builder call, it is possible to
substitute in the existing value by using a string containing the variable name prefaced by a dollar sign ($).

env = Environnment ( CPPDEFI NES="FQOO'")

env. Qbj ect (target ="fool.0", source="foo.c")

env. Qbj ect (target="fo002. 0", source="foo.c", CPPDEFI NES="BAR")

env. Qoj ect (target ="fo003. 0", source="foo.c", CPPDEFINES=["BAR', "$CPPDEFINES"])

Which yields:

% scons -Q

cc -o fool.o -c -DFQO foo.c

cc -o foo2.0 -c -DBAR foo.c

cc -o foo3.0 -c -DBAR - DFQO foo.c

Itisalso possibletousethepar se_f | ags keyword argument in an override to merge command-line style arguments
into the appropriate construction variables. This works like the env. Mer geFl ags method, which will be fully
described in the next chapter.

This example adds 'include’ to $CPPPATH, 'EBUG' to $CPPDEFI NES, and 'm’ to $LI BS:

env = Environnent ()
env. Program(' hell o', "hello.c', parse flags='-1include -DEBUG -1n)

So when executed:

% scons -Q
cc -0 hello.o -¢c -DEBUG -1include hello.c
cc -o hello hello.o -Im

Using temporary overrides this way is lighter weight than making a full construction environment, so it can help
performance in large projects which have lots of specia case values to set. However, keep in mind that this only
works well when the targets are unique. Using builder overrides to try to build the same target with different sets of
flags or other construction variables will lead tothescons: *** Two environnents with different
actions. .. error described in Section 7.2.6, “Multiple Construction Environments’ above. In this case you will
actually want to create separate environments.

7.3. Controlling the Execution Environment for
Issued Commands

When SCons builds a target file, it does not execute the commands with the external environment that you used to
execute SCons. Instead, it builds an execution environment from the values stored in the SENV construction variable
and uses that for executing commands.

The most important ramification of this behavior is that the PATH environment variable, which controls where the
operating system will look for commands and utilities, will aimost certainly not be the same as in the external
environment from which you called SCons. This means that SCons might not necessarily find all of the toolsthat you
can successfully execute from the command line.

Iy
=== SCONS 51



Propagating PATH From the External Environment

The default value of the PATH environment variable on a POSIX system is/ usr/ | ocal / bi n:/opt/bin:/

bi n: / usr/ bi n: / snap/ bi n. The default value of the PATH environment variable on a Windows system comes
from the Windows registry value for the command interpreter. If you want to execute any commands--compilers,
linkers, etc.--that are not in these default locations, you need to set the PATH value in the $ENV dictionary in your
construction environment.

The ssimplest way to do thisisto initialize explicitly the value when you create the construction environment; thisis
one way to do that:

path = ["/usr/local/bin', "/bin', "/usr/bin']
env = Environment (ENV={' PATH : pat h})

Assigning adictionary to the $ENV construction variable in this way completely resets the execution environment, so
that the only variable that will be set when external commands are executed will be the PATH value. If you want to
use therest of the valuesin $ENV and only set the value of PATH, you can assign a value only to that variable:

env['ENV J]['PATH ] = ['/usr/local/bin', '/bin', '/usr/bin']

Notethat SCons does allow you to define the directoriesin the PATH in a string with paths separated by the pathname-
separator character for your system (* : ' on POSIX systems,' ;' on Windows).

env['ENV ][' PATH ] = '/usr/local/bin:/bin:/usr/bin'

But doing so makesyour SConscr i pt filelessportable, sinceit will be correct only for the system type that matches
the separator. Y ou can use the Python os. pat hsep for for greater portability - don't worry too much if this Python
syntax doesn't make sense since there are other ways available:

i mport os
env['ENV ][' PATH ] = os.pathsep.join(['/usr/local/bin', '/bin', "/fusr/bin'])

7.3.1. Propagating PATH From the External Environment

Y ou may want to propagate the external environment PATH to the execution environment for commands. Y ou do this
by initializing the PATH variable with the PATH value from the os. envi r on dictionary, which is Python's way of
letting you get at the external environment:

i mport os
env = Environment (ENV={' PATH : os.environ[' PATH ]})

Alternatively, you may find it easier to just propagate the entire external environment to the execution environment
for commands. Thisis simpler to code than explicity selecting the PATH value:

i mport os
env = Environment ( ENV=0s. envi ron. copy())

Iy
=== SCONS 52



Adding to PATH Values in the Execution Environment

Either of these will guarantee that SConswill be able to execute any command that you can execute from the command
line. The drawback is that the build can behave differently if it's run by people with different PATH values in their
environment--for example, if both the/ bi nand/ usr/ | ocal / bi n directories have different cc commands, then
which one will be used to compile programs will depend on which directory islisted first in the user's PATH variable.

7.3.2. Adding to PATH Values in the Execution
Environment

One of the most common requirements for manipulating avariable in the execution environment isto add one or more
custom directoriesto apath search variable like PATHon Linux or POSIX systems, or %°ATHY0on Windows, so that a
locally-installed compiler or other utility can befound when SConstriesto executeit to update atarget. SCons provides
env. PrependENVPat h and env. AppendENVPat h functions to make adding things to execution variables
convenient. You call these functions by specifying the variable to which you want the value added, and then value
itself. Soto add some/ usr/ | ocal directoriesto the $SPATHand $LI B variables, you might:

env = Envi ronnent ( ENV=0s. envi ron. copy())
env. PrependENVPat h(' PATH , '/usr/local /bin")
env. AppendENVPat h(' LIB', '/usr/local/lib")

Note that the added values are strings, and if you want to add multiple directories to avariable like $PATH, you must
include the path separator character in the string (: on Linux or POSIX, ; on Windows, or use 0s. pat hsep for
portability).

7.4. Using the toolpath for external Tools
7.4.1. The default tool search path

Normally when using a tool from the construction environment, several different search locations are checked
by default. This includes the SCons/ Tool s/ directory that is part of the scons distribution and the directory
site_scons/site_tool s relaivetotheroot SConst r uct file.

# Builtin tool or tool located within site tools
env = Environnent (t ool s=[' SoneTool '])
env. SoneTool (targets, sources)

# The search | ocati ons woul d include by default
SCons/ Tool / SoneTool . py

SCons/ Tool / SomeTool / _init__.py
./site_scons/site_tool s/ SoneTool . py
./site_scons/site _tool s/SoneTool/ _init__.py

7.4.2. Providing an external directory to toolpath

In some cases you may want to specify adifferent location to search for tools. The Envi r onnment function contains
an option for thiscalled t ool pat h This can be used to add additional search directories.

# Tool located within the tool path directory option

Iy
=== SCONS 53



Nested Tools within atoolpath

env = Environment (

t ool s=[' SomeTool '],

t ool pat h=["' / opt/ SomeTool Pat h', '/opt/ SomeTool Pat h2' ]
)

env. SomeTool (targets, sources)

# The search locations in this exanple woul d incl ude:
/ opt / SomeTool Pat h/ SomeTool . py

[ opt / SomeTool Pat h/ SomeTool / __init__. py

[ opt / SomeTool Pat h2/ SoneTool . py

[ opt / SomeTool Pat h2/ SoneTool / __init__.py

SCons/ Tool / SomeTool . py

SCons/ Tool / SomeTool / __init__. py
./site_scons/site_tool s/ SoneTool . py
./site_scons/site_tool s/SoneTool/ __init__.py

7.4.3. Nested Tools within a toolpath

Since SCons 3.0, a Builder may be located within a sub-directory / sub-package of the toolpath. Thisis similar to
namespacing within Python. With nested or namespaced tools we can use the dot notation to specify a sub-directory
that the tool is located under.

# namespaced t ar get

env = Environment (
t ool s=[' SubDi r 1. SubDi r 2. SoneTool '],
t ool pat h=["' / opt / SomeTool Pat h' ]

)

env. SomeTool (targets, sources)

# Wth this exanple the search | ocations woul d incl ude

[ opt / SomeTool Pat h/ SubDi r 1/ SubDi r 2/ SomeTool . py

[ opt / SomeTool Pat h/ SubDi r 1/ SubDi r 2/ SomeTool / __init__. py
SCons/ Tool / Subbi r 1/ SubbDi r 2/ SomeTool . py

SCons/ Tool / SubDi r 1/ SubDi r 2/ SomeTool / __init__. py
./site_scons/site_tool s/SubDir1/ SubDir2/ SoneTool . py
./site_scons/site_tool s/SubDir1/ SubDir2/ SoneTool/__init__.py

7.4.4. Using sys.path within the toolpath

If wewant to accesstoolsexternal to sconswhich arefindableviasys. pat h (for example, toolsinstalled viaPython's
pip package manager), itispossibletousesys. pat h with thetool path. Onething to watch out for with this approach
isthat sys. pat h can sometimes contains paths to . egg files instead of directories. So we need to filter those out
with this approach.

# namespaced target using sys.path within tool path

searchpaths = []
for itemin sys.path:
if os.path.isdir(item:
sear chpat hs. append(iten

Iy
=== SCONS 54



Using the PyPackageDi r function to add to the
toolpath

env = Environment (
t ool s=[' sonei nst al | edpackage. SoneTool '],
t ool pat h=sear chpat hs

)

env. SomeTool (targets, sources)

By using sys. pat h with the toolpath argument and by using the nested syntax we can have scons search packages
installed via pip for Tools.

# For W ndows based on the python version and install directory, this may be sonmething lik
C:\ Pyt hon35\ Li b\ si t e- packages\ sonei nst al | edpackage\ SoneTool . py
C:\ Pyt hon35\ Li b\ si t e- packages\ sonei nst al | edpackage\ SomeTool\ _init__.py

# For Linux this could be sonething |ike:
[usr/1ib/python3/di st-packages/ sonei nst al | edpackage/ SonmeTool . py
[fusr/1ib/python3/di st-packages/ sonei nst al | edpackage/ SomeTool / __init__.py

7.4.5. Using the PyPackageDi r function to add to the
toolpath

In some cases you may want to use atool located within ainstalled external pip package. Thisis possible by the use
of sys. pat h with the toolpath. However in that situation you need to provide a prefix to the toolname to indicate
whereit islocated within sys. pat h.

searchpaths = []
for itemin sys.path:
if os.path.isdir(item:
sear chpat hs. append(iten)
env = Environment (
t ool s=[' t ool s_exanpl e. subdi r 1. subdi r 2. SoneTool ' ],
t ool pat h=sear chpat hs

)

env. SomeTool (targets, sources)

To avoid the use of a prefix within the name of the tool or filtering sys. pat h for directories, we can use
PyPackageDi r functiontolocate the directory of the python package. PyPackageDi r returnsaDir object which
represents the path of the directory for the python package / module specified as a parameter.

# nanmespaced target using sys.path
env = Environment (

t ool s=[' SoneTool '],

t ool pat h=[ PyPackageDi r (' t ool s_exanpl e. subdi r 1. subdi r2')]
)

env. SoneTool (targets, sources)

Iy
=== SCONS 55



8 Automatically Putting

Command-line Options into
their Construction Variables

This chapter describes the Mer geFl ags, Par seFl ags, and Par seConfi g methods of a construction
environment, aswell asthepar se_f | ags keyword argument to methods that construct environments.

8.1. Merging Options into the Environment: the
Mer geFl ags Function

SCons construction environments have a Mer geFl ags method that merges values from a passed-in argument into
the construction environment. If the argument is a dictionary, Mer geFl ags treats each value in the dictionary as a
list of optionsyou would passto acommand (such asacompiler or linker). Mer geFl ags will not duplicate an option
if it already exists in the construction variable. If the argument is a string, Mer geFl ags calls the Par seFl ags
method to burst it out into a dictionary first, then acts on the result.

Mer geFl ags tries to be intelligent about merging options, knowing that different construction variables may have
different needs. When merging options to any variable whose nhame ends in PATH, Mer geFl ags keepsthe leftmost
occurrence of the option, becausein typical lists of directory paths, the first occurrence "wins." When merging options
to any other variable name, Mer geFl ags keeps the rightmost occurrence of the option, because in alist of typical
command-line options, the last occurrence "wins."

env = Environnent ()

env. Append( CCFLAGS=" -option -O3 -O1')
flags = {' CCFLAGS : '-whatever -O3'}
env. Mer geFl ags(fl ags)

print (" CCFLAGS: ", env[' CCFLAGS ])

% scons -Q
CCFLAGS: ['-option', '-0O1', '-whatever', '-Q3']
scons: ~.' is up to date.

Note that the default value for $CCFLAGS is an internal SCons object which automatically converts the options you
specify asastring into alist.



Merging Options While Creating Environment: the
par se_f | ags Parameter

env = Environment ()

env. Append( CPPPATH=[ "' /i nclude', '/usr/local/include', '/usr/include'])
flags = {" CPPPATH : ['/usr/opt/include', '/usr/local/include' ]}

env. Mer geFl ags(fl ags)

print (" CPPPATH:. ", env[' CPPPATH ])

% scons -Q
CPPPATH: ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include']
scons: ".' is up to date.

Notethat thedefault valuefor $CPPPATHisanormal Pythonlist, so you should giveitsvaluesasalist inthedictionary
you pass to the Mer geFl ags function.

If Mer geFl ags is passed anything other than a dictionary, it calls the Par seFl ags method to convert it into a
dictionary.

env = Environment ()

env. Append( CCFLAGS="' -option -G8 -0O1')

env. Append( CPPPATH=["' /i nclude', '/usr/local/include', '/usr/include'])
env. Mer geFl ags(' -whatever -1/usr/opt/include -O3 -1/usr/local/include')
print("CCFLAGS: ", env[' CCFLAGS ])

print (" CPPPATH:. ", env[' CPPPATH ])

% scons -Q

CCFLAGS: ['-option', '-0O1', '-whatever', '-Q3']

CPPPATH: ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include']
scons: ~.' is up to date.

In the combined example above, Par seFl ags has sorted the optionsinto their corresponding variables and returned
adictionary for Mer geFl ags to apply to the construction variables in the specified construction environment.

8.2. Merging Options While Creating
Environment: the parse_fl ags Parameter

It isalso possible to merge construction variable values from arguments given to the Envi r onnent call itself. If the
par se_f | ags keyword argument is given, its value is distributed to construction variables in the new environment
in the same way as described for the Mer geFl ags method. This aso works when calling env. C one, aswell as
in overrides to builder methods (see Section 7.2.14, “Overriding Construction Variable Settings”).

env = Environnent (parse flags="-1/opt/include -L/opt/lib -1foo")
for k in ('CPPPATH , 'LIBPATH , 'LIBS):

print("%:" %k, env.get(k))
env. Program(“f1.c")

% scons -Q

CPPPATH: ['/opt/include']
LI BPATH: ['/opt/lib']
LIBS: ['foo0']

Iy
=== SCONS 57



Separating Compile Argumentsinto their Variables: the
Par seFl ags Function

cc -ofl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

8.3. Separating Compile Arguments into their
Variables: the Par seFl ags Function

SCons has a bewildering array of construction variables for different types of options when building programs.
Sometimes you may not know exactly which variable should be used for a particular option.

SCons construction environments have aPPar seFl ags method that takes a set of typical command-line options and
distributes them into the appropriate construction variables Historically, it was created to support the Par seConf i g
method, so it focuses on options used by the GNU Compiler Collection (GCC) for the C and C++ toolchains.

Par seFl ags returns a dictionary containing the options distributed into their respective construction variables.
Normally, thisdictionary would then be passed to Mer geFl ags to mergethe optionsinto aconstruction environment,
but the dictionary can be edited if desired to provide additional functionality. (Note that if the flags are not going to
be edited, calling Mer geFl ags with the options directly will avoid an additional step.)

env = Environnent ()
d = env. ParseFl ags("-1/opt/include -L/opt/lib -1foo")
for k, vin sorted(d.itens()):
if v:
print(k, v)
env. Mer geFl ags(d)
env. Program(“f1.c")

% scons -Q

CPPPATH [/ opt/i ncl ude' ]

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -o fl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

Notethat if the options are limited to generic typeslike those above, they will be correctly translated for other platform
types:

C.\>scons -Q

CPPPATH ['/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cl /Fofl.obj /c fl1.c /nologo /I\opt\include

link /nologo /QUT: f1.exe /LIBPATH: \opt\lib foo.lib f1.obj
enmbedMani f est ExeCheck(target, source, env)

Since the assumption is that the flags are used for the GCC toolchain, unrecognized flags are placed in $CCFLAGS
so they will be used for both C and C++ compiles:

env = Environment ()
d = env. Par seFl ags("-what ever")
for k, vin sorted(d.itens()):
if wv:
print(k, v)

Iy
=== SCONS 58



Finding Installed Library Information: the
Par seConf i g Function

env. Mer geFl ags(d)
env. Program("f1.c")

% scons -Q

CCFLAGS - what ever

cc -o fl.o -c -whatever fl.c
cc -ofl fl.o

Par seFl ags will also accept a(recursive) list of stringsasinput; thelist isflattened before the strings are processed:

env = Environnent ()

d = env. ParseFl ags(["-I/opt/include", ["-L/opt/lib", "-1fo0"]])
for k, vin sorted(d.itens()):
if v
print(k, v)

env. Mer geFl ags(d)
env. Program(“f1.c")

% scons -Q

CPPPATH ['/opt/i ncl ude' ]

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -o fl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

If a string begins with a an exclamation mark (! ), the string is passed to the shell for execution. The output of the
command is then parsed:

env = Environment ()

d = env. ParseFl ags(["!echo -1/opt/include", "!echo -L/opt/lib", "-1fo0"])
for k, v in sorted(d.itens()):
if v
print(k, v)

env. Mer geFl ags(d)
env. Program("f1.c")

% scons -Q

CPPPATH [ '/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -ofl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

Par seFl ags isregularly updated for new options; consult the man page for details about those currently recognized.

8.4. Finding Installed Library Information: the
Par seConf i g Function

Configuring the right options to build programs to work with libraries--especially shared libraries--that are available
on POSIX systems can be complex. To help this situation, various utilies with names that end in conf i g return

Iy
=== SCONS 59



Finding Installed Library Information: the
Par seConf i g Function

the command-line options for the GNU Compiler Collection (GCC) that are needed to build and link against those
libraries; for example, the command-line optionsto usealibrary named | i b could befound by calling a utility named
lib-config.

A more recent convention is that these options are available through the generic pkg-config program, providing a
common framework, error handling, and the like, so that all the package creator has to do is provide the set of strings
for his particular package.

SCons construction variableshave aPar seConf i g method that asksthe host system to execute acommand and then
configures the appropriate construction variables based on the output of that command. This lets you run a program
like pkg-config or amore specific utility to help set up your build.

env = Environment ()

env[' CPPPATH ] = ['/Ilib/comnpat"']

env. ParseConfi g("pkg-config x11 --cflags --1ibs")
print (" CPPPATH:. ", env[' CPPPATH ])

SCons will execute the specified command string, parse the resultant flags, and add the flags to the appropriate
environment variables.

% scons -Q
CPPPATH: ['/lib/compat', '/usr/X11l/include']

scons: .' is up to date.

In the example above, SCons has added the include directory to $CPPPATH (Depending upon what other flags are
emitted by the pkg- conf i g command, other variables may have been extended as well.)

Note that the options are merged with existing options using the Mer geFl ags method, so that each option only
occurs once in the construction variable.

env = Environnent ()

env. Par seConfi g("pkg-config x11 --cflags --1ibs")
env. Par seConfi g("pkg-config x11 --cflags --1ibs")
print ("CPPPATH ", "CPPPATH ", env[' CPPPATH ])

% scons -Q
CPPPATH: ['/usr/X11/i ncl ude']
scons: ~.' is up to date.

Iy
=== SCONS 60



9 Controlling Build Output

A key aspect of creating a usable build configuration is providing useful output from the build so its users can readily
understand what the build is doing and get information about how to control the build. SCons provides severa ways
of controlling output from the build configuration to help make the build more useful and understandable.

9.1. Providing Build Help: the Hel p Function

It's often very useful to be able to give users some help that describes the specific targets, build options, etc., that can
be used for your build. SCons provides the Hel p function to allow you to specify this help text:

Hel p("""
Type: 'scons programi to build the production program
'scons debug' to build the debug version.
")

Optionally, one can specify the append flag:

Hel p("""
Type: 'scons programi to build the production program
'scons debug' to build the debug version.
", append=True)

(Note the above use of the Python triple-quote syntax, which comes in very handy for specifying multi-line strings
like help text.)

When the SConst ruct or SConscr i pt filescontain such acall to the Hel p function, the specified help text will
be displayed in response to the SCons - h option:

% scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programli to build the production program
'scons debug' to build the debug version.

Use scons -H for hel p about command-|ine options.



Controlling How SCons Prints Build Commands: the
$* COMSTR Variables

The SConscri pt filesmay contain multiple calls to the Hel p function, in which case the specified text(s) will be
concatenated when displayed. This allows you to split up the help text across multiple SConscri pt files. In this
situation, the order in which the SConscr i pt filesare called will determine the order in which the Hel p functions
are called, which will determine the order in which the various bits of text will get concatenated.

When used with AddOpt i on Help("text", append=False) will clobber any help output associated with AddOption().
To preserve the help output from AddOption(), set append=True.

Another use would be to make the help text conditional on some variable. For example, suppose you only want to
display a line about building a Windows-only version of a program when actually run on Windows. The following
SConst r uct file:

env = Environnent ()
Hel p("\ nType: 'scons programi to build the production program\n")
if env[' PLATFORM ] == 'wi n32':
Hel p("\ nType: 'scons w ndebug' to build the Wndows debug version.\n")

Will display the complete help text on Windows:

C.\>scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programi to build the production program
Type: 'scons wi ndebug' to build the Wndows debug versi on.

Use scons -H for hel p about command-Iine options.
But only show the relevant option on aLinux or UNIX system:

% scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programi to build the production program

Use scons -H for hel p about command-|ine options.

If thereisno Hel p text inthe SConst ruct or SConscri pt files, SConswill revert to displaying its standard list
that describes the SCons command-line options. Thislist is also always displayed whenever the - Hoption is used.

9.2. Controlling How SCons Prints Build
Commands: the $* COMSTR Variables

Sometimes the commands executed to compile object files or link programs (or build other targets) can get very
long, long enough to make it difficult for users to distinguish error messages or other important build output from the
commands themselves. All of the default $* COMvariables that specify the command lines used to build various types
of target files have a corresponding $* COVBTR variable that can be set to an aternative string that will be displayed
when the target is built.

Iy
=== SCONS 62



Controlling How SCons Prints Build Commands: the
$* COMSTR Variables

For example, suppose you want to have SCons display a" Conpi | i ng" message whenever it's compiling an object
file,anda" Li nki ng" when it'slinking an executable. Y ou could writea SConst r uct filethat lookslike:

env = Environnment (CCCOMSTR = " Conpi |l i ng $TARGET",
LI NKCOMSTR = "Li nki ng $TARGET")
env. Program(' foo.c')

Which would then yield the output:

% scons -Q
Conpi i ng foo.o0
Li nki ng foo

SCons performs complete variable substitution on $* COVBTR variables, so they have access to al of the standard
variables like $TARGET $SOURCES, etc., as well as any construction variables that happen to be configured in the
construction environment used to build a specific target.

Of course, sometimesit's still important to be able to see the exact command that SCons will execute to build atarget.
For example, you may simply need to verify that SConsis configured to supply the right options to the compiler, or a
developer may want to cut-and-paste a compile command to add afew options for a custom test.

One common way to give users control over whether or not SCons should print the actual command line or a short,
configured summary is to add support for a VERBOSE command-line variable to your SConst r uct file. A smple
configuration for this might look like:

env = Environment ()
i f ARGUMENTS. get (' VERBOSE') != "'"1":
env[' CCCOMSTR ] = "Conpiling $TARGET"
env[' LI NKCOMSTR ] = "Linki ng $TARGET"
env. Program(' foo.c')

By only setting the appropriate $* COVSTR variablesif the user specifies VERBOSE=1 on the command line, the user
has control over how SCons displays these particular command lines:

% scons -Q
Conpi i ng foo.o0

Li nki ng foo

% scons -Q -c
Rermoved foo. 0
Rermoved f oo

% scons - Q VERBOSE=1
cc -o foo.o -c foo.c
cc -o foo foo.o

A gentle reminder here: many of the commands for building comein pairs, depending on whether the intent isto build
an object for usein ashared library or not. The command strings mirror this, so it may be necessary to set, for example,
both CCCOMSTR and SHCCCOVBTR to get the desired results.

Iy
=== SCONS 63



Providing Build Progress Output: the Pr ogr ess
Function

9.3. Providing Build Progress Output: the
Pr ogr ess Function

Another aspect of providing good build output is to give the user feedback about what SCons is doing even when
nothing is being built at the moment. This can be especially true for large builds when most of the targets are already
up-to-date. Because SCons can take a long time making absolutely sure that every target is, in fact, up-to-date with
respect to alot of dependency files, it can be easy for users to mistakenly conclude that SCons is hung or that there
is some other problem with the build.

One way to deal with this perception isto configure SCons to print something to let the user know what it's "thinking
about." The Pr ogr ess function allows you to specify a string that will be printed for every file that SCons is
"considering" while it istraversing the dependency graph to decide what targets are or are not up-to-date.

Progress(' Eval uati ng $TARGET\ n')
Program('fl.c')
Program('f2.c')

Note that the Pr ogr ess function does not arrange for a newline to be printed automatically at the end of the string
(as does the Python pr i nt function), and we must specify the\ n that we want printed at the end of the configured
string. This configuration, then, will have SCons print that it is Eval uat i ng each file that it encountersin turn as
it traverses the dependency graph:

% scons -Q

Eval uati ng SConst r uct
Eval uating f1.c
Eval uating f1.0
cc -ofl.o-cfl.c
Eval uating f1

cc -oflfl.o

Eval uating f2.c
Eval uating f2.0
cc -of2.0-c f2.c
Eval uating f2

cc -of2f2.0

Eval uating .

Of course, normally you don't want to add all of these additional linesto your build output, asthat can makeit difficult
for the user to find errors or other important messages. A more useful way to display this progress might be to have the
file names printed directly to the user's screen, not to the same standard output stream where build output is printed,
and to use acarriage return character (\ r ) so that each file name gets re-printed on the same line. Such a configuration
would look like:

Progress(' $TARCET\r "',
file=open('/dev/tty', 'w),
overw ite=True)

Program('fl.c')

Program('f2.c')

Note that we also specified the over wri t e=Tr ue argument to the Pr ogr ess function, which causes SCons
to "wipe out" the previous string with space characters before printing the next Pr ogr ess string. Without the

Iy
=== SCONS 64



Printing Detailed Build Status: the
CGet Bui | dFai | ur es Function

overwr i t e=Tr ue argument, a shorter file name would not overwrite all of the charactesin alonger file name that
precedes it, making it difficult to tell what the actual file name is on the output. Also note that we opened up the /
dev/ tty filefor direct access (on POSIX) to the user's screen. On Windows, the equivalent would be to open the
con: filename.

Also, it'simportant to know that although you can use $TARGET to substitute the name of the node in the string, the
Pr ogr ess function does not perform general variable substitution (because there's not necessarily a construction
environment involved in evaluating a node like a sourcefile, for example).

Y ou can also specify alist of stringsto the Pr ogr ess function, in which case SConswill display each string in turn.
This can be used to implement a"spinner" by having SCons cycle through a sequence of strings:

Progress(['-\r', "\\\r', "|\r', "/\r'], interval =5)
Program('fl.c')
Program('f2.c')

Notethat here we have also used thei nt er val = keyword argument to have SCons only print anew "spinner” string
once every five evaluated nodes. Using ani nt er val = count, even with stringsthat use $TARGET like our examples
above, can be a good way to lessen the work that SCons expends printing Pr ogr ess strings, while still giving the
user feedback that indicates SConsis still working on evaluating the build.

Lastly, you can have direct control over how to print each evaluated node by passing a Python function (or other
Python callable) to the Pr ogr ess function. Y our function will be called for each evaluated node, allowing you to
implement more sophisticated logic like adding a counter:

screen = open('/dev/tty', 'w)
count = 0
def progress_functi on(node)
count += 1
screen.wite(' Node %id: %\r' % (count, node))

Progress(progress_function)

Of course, if you choose, you could completely ignore the node argument to the function, and just print a count, or
anything else you wish.

(Note that there's an obvious follow-on question here: how would you find the total number of nodes that will be
evaluated so you can tell the user how close the build is to finishing? Unfortunately, in the general case, thereisn't a
good way to do that, short of having SCons evaluate its dependency graph twice, first to count the total and the second
timeto actually build the targets. Thiswould be necessary because you can't know in advance which target(s) the user
actually requested to be built. The entire build may consist of thousands of Nodes, for example, but maybe the user
specifically requested that only a single object file be built.)

9.4. Printing Detailed Build Status: the
Get Bui | dFai | ur es Function

SCons, like most build tools, returns zero status to the shell on success and nonzero status on failure. Sometimes it's
useful to give moreinformation about the build status at the end of therun, for instanceto print an informative message,
send an email, or page the poor slob who broke the build.

Iy
=== SCONS 65



Printing Detailed Build Status: the
CGet Bui | dFai | ur es Function

SConsprovidesaGet Bui | dFai | ur es method that you can usein apythonat exi t functionto get alist of objects
describing the actions that failed while attempting to build targets. There can be more than one if you're using - j .
Here's asimple example:

i mport atexit

def print_build_failures():
from SCons. Scri pt inmport GetBuil dFail ures
for bf in GetBuildFailures():
print("% failed: %" % (bf.node, bf.errstr))
atexit.register(print_build fail ures)

Theatexit.register cal registersprint _buil d failures asanatexit calback, to be called before
SCons exits. When that function is caled, it calls Get Bui | dFai | ur es to fetch the list of failed objects. See the
man page for the detailed contents of the returned objects; some of the more useful attributes are. node, . errstr,
.filenanme,and. command. Thefi | enane isnot necessarily the same file asthe node; the node isthe target
that was being built when the error occurred, whilethef i | enaneisthefileor dir that actually caused the error. Note:
only call Get Bui | dFai | ur es at the end of the build; calling it at any other time is undefined.

Here is a more compl ete example showing how to turn each element of Get Bui | dFai | ur es into astring:

# Make the build fail if we pass fail=1 on the command |ine
i f ARGUMENTS. get('fail', 0):
Conmmand(' target', 'source', ['/bin/false'])

def bf _to_str(bf):
"""Convert an el enent of GetBuil dFailures() to a string
in a useful way."""
i mport SCons. Errors
if bf is None: # unknown targets product None in |ist
return ' (unknown tgt)
elif isinstance(bf, SCons.Errors. StopError):
return str(bf)
elif bf.node:
return str(bf.node) +
elif bf.filenane:
return bf.filename +
return 'unknown fail ure:
i mport atexit

+ bf.errstr
"' + bf.errstr
+ bf.errstr

def build_status():

"""Convert the build status to a 2-tuple, (status, nsg).

from SCons. Scri pt inport GetBuildFail ures

bf = GetBuil dFai |l ures()

i f bf:
# bf is normally a list of build failures; if an elenent is None,
# it's because of a target that scons doesn't know anythi ng about.
status = 'failed
failures_nessage = "\n".join(["Failed building %" % bf_to_str(x)

for x in bf if x is not None])

el se:
# if bf is None, the build conpl eted successfully.

Iy
=== SCONS 66



Printing Detailed Build Status: the
Cet Bui | dFai | ur es Function

status = ' ok’
failures_nmessage = "'
return (status, failures_nessage)

def display_ build_status():
"""Display the build status. Called by atexit.
Here you could do all kinds of conplicated things."""
status, failures_nessage = buil d_status()

if status == 'failed":
print("FAILED !'I1") # could display alert, ring bell, etc.
elif status == 'ok':

print("Build succeeded.")
print(failures_nessage)

atexit.register(display_build_status)

When thisruns, you'll see the appropriate output:

% scons -Q

scons: ' is up to date.

Bui | d succeeded.

% scons -Q fail=1

scons: *** [target] Source "source' not found, needed by target “target'.

FAI LED! ! ']

Fail ed building target: Source "“source' not found, needed by target “target'.

Iy
=== SCONS 67



10 Controlling a Build From
the Command Line

SCons provides a number of ways for you as the writer of the SConscr i pt filesto give you (and your users) the
ability to control the build execution. The arguments that can be specified on the command line are broken down into
three types.

Options
Command-line options always begin with one or two - (hyphen) characters. SCons provides ways for you to
examine and set options values from within your SConscr i pt files, aswell as the ability to define your own
custom options. See Section 10.1, “Command-Line Options’, below.

Variables
Any command-line argument containing an = (equal sign) is considered a variable setting with the form
var i abl e=val ue. SCons provides direct access to all of the command-line variable settings, the ability to
apply command-line variable settings to construction environments, and functions for configuring specific types
of variables (Boolean values, path names, etc.) with automatic validation of the specified values. See Section 10.2,
“Command-Linevari abl e=val ue Build Variables’, below.

Targets
Any command-line argument that is not an option or a variable setting (does not begin with a hyphen and does
not contain an equal sign) is considered atarget that the you are telling SCons to build. SCons provides access to
the list of specified targets, as well as ways to set the default list of targets from within the SConscr i pt files.
See Section 10.3, “Command-Line Targets’, below.

10.1. Command-Line Options

SCons has many command-line options that control its behavior. An SCons command-line option always begins with
one or two hyphen (- ) characters.

10.1.1. Not Having to Specify Command-Line Options
Each Time: the SCONSFLAGS Environment Variable

Y ou may find yourself using the same command-line options every time you run SCons. For example, you might find
it saves time to specify -j 2 to have SCons run up to two build commands in parallel. To avoid having to type -

i 2 by hand every time, you can set the external environment variable SCONSFLAGS to a string containing-j 2,
as well as any other command-line options that you want SCons to always use. SCONSFLAGS is an exception to the
usual rule that SCons itself avoids looking at environment variables from the shell you are running.



Getting Vaues Set by Command-Line Options: the
Get Opt i on Function

If, for example, you are using a POSIX shell such as bash or zsh and you always want SCons to use the - Q option,
you can set the SCONSFLAGS environment as follows:

% scons
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...
[ buil d output]
scons: done buil ding targets.
% export SCONSFLAGS="- Q'
% scons
[ buil d output]

For csh-style shells on POSIX systems you can set the SCONSFLAGS environment variable as follows:
$ setenv SCONSFLAGS "- Q'

For the Windows command shell (cmd) you can set the SCONSFLAGS environment variable as follows:
C.\ Users\ foo> set SCONSFLAGS="- Q'

To set SCONSFLAGS more permanently you can add the setting to the shell's startup file on POSIX systems, and
on Windows you can use the Syst em Pr oper ti es control panel applet to select Envi ronment Vari abl es
and set it there.

10.1.2. Getting Values Set by Command-Line Options:
the Get Opt i on Function

SCons providesthe Get Opt i on function to get the values set by the various command-line options.

One use case for Get Opt i on isto check whether or not the - h or - - hel p option has been specified. Normally,
SCons does not print its help text until after it has read al of the SConscript files, because it's possible that help
text has been added by some subsidiary SConscript file deep in the source tree hierarchy. Of course, reading all of
the SConscript files takes extratime. If you know that your configuration does not define any additional help text in
subsidiary SConscript files, you can speed up displaying the command-line help by using the Get Opt i on function
to load the subsidiary SConscript filesonly if the- h or - - hel p option has not been specified like this:

if not GetOption('help'):
SConscri pt (' src/ SConscript', export='env')

In general, the string that you passto the Get Opt i on function to fetch the value of acommand-line option setting is
the same as the "most common™ long option name (beginning with two hyphen characters), although there are some
exceptions. The list of SCons command-line options and the Get Opt i on strings for fetching them, are availablein
the Section 10.1.4, “ Strings for Getting or Setting Values of SCons Command-Line Options” section, below.

Get Opt i on can be used to retrieve the values of options defined by callsto AddOpt i on. A Get Opt i on call must
appear after the AddOpt i on call for that option. If the AddOpt i on call suppliedadest keyword argument, astring

Iy
=== SCONS 69



Setting Values of Command-Line Options; the
Set Opt i on Function

with that name is what to pass as the argument to Get Opt i on, otherwise it is a (possibly modified) version of the
first long option name - see AddQpt i on.

10.1.3. Setting Values of Command-Line Options: the
Set Opt i on Function

You can aso set the values of SCons command-line options from within the SConscri pt files by using the
Set Opt i on function. The strings that you use to set the values of SCons command-line options are available in the
Section 10.1.4, “ Strings for Getting or Setting Vaues of SCons Command-Line Options” section, below.

One use of the Set Opt i on functionisto specify avalueforthe-j or - - j obs option, so that you get the improved
performance of a parallel build without having to specify the option by hand. A complicating factor is that a good
valuefor the-j optionis somewhat system-dependent. One rough guideline is that the more processors your system
has, the higher you want to set the - j value, in order to take advantage of the number of CPUs.

For example, suppose the administrators of your development systems have standardized on setting a NUM_CPU
environment variable to the number of processors on each system. A little bit of Python code to access the environment
variable and the Set Opt i on function provides the right level of flexibility:

i mport os

numcpu = int(os.environ.get(' NUM CPU, 2))
Set Opti on(' num j obs', num cpu)
print("running with -j %" % Get Option(' num jobs'))

The above snippet of code sets the value of the - - j obs option to the value specified in the NUM_CPU environment
variable. (Thisisone of the exception caseswherethe string is spelled differently from the from command-line option.
The string for fetching or setting the - - j obs valueisnum j obs for historical reasons.) The code in this example
printsthe num j obs vauefor illustrative purposes. It uses a default value of 2 to provide some minimal parallelism
even on single-processor systems:

% scons -Q
running with -j 2
scons: ' is up to date.

But if the NUM_CPU environment variable is set, then use that for the default number of jobs:

% export NUM CPU="4"

% scons -Q

running with -j 4

scons: ~.' is up to date.

But any explicit-j or - -j obs value you specify on the command line is used first, regardless of whether or not the
NUM_CPU environment variableis set:

% scons -Q -j 7

running with -j 7

scons: ~.' is up to date.
% export NUM CPU="4"

% scons -Q -j 3

running with -j 3

Iy
=== SCONS 70



Strings for Getting or Setting Vaues of SCons Command-

Line Options

scons: is up to date

10.1.4. Strings for Getting or Setting Values of SCons

Command-Line Options

The strings that you can pass to the Get Opt i on and Set Opt i on functions usually correspond to the first long-
form option name (that is, name beginning with two hyphen characters. - - ), after replacing any remaining hyphen

characters with underscores.

Set Opt i on isnot currently supported for options added with AddOpt i on.

Thefull list of strings and the variables they correspond to is as follows:

String for Get Opt i on and Set Opti on

Command-Line Option(s)

cache_debug

- -cache-debug

cache_di sabl e

--cache-di sabl e

cache_force

--cache-force

cache_show

--cache- show

cl ean -c,--cl ean,--renove

config --config

directory -C,--directory

di skcheck - -di skcheck

duplicate --duplicate

file -f,--file,--makefile ,--sconstruct
hel p -h,--help

ignore_errors

--ignore-errors

i mplicit_cache

--inplicit-cache

i mplicit_deps_changed

--inmplicit-deps-changed

i mplicit_deps_unchanged

--inplicit-deps-unchanged

interactive

--interact,--interactive

keep_goi ng -k, - - keep-goi ng
max_drift --max-drift
no_exec -n,--no-exec,--just-print,--dry-run,--

recon

no_site dir

--no-site-dir

num j obs

-j,--jobs

profile file

--profile

question

-(,--question

random

--random

repository

-Y,--repository,--srcdir

si |l ent -s,--silent,--quiet
site dir --site-dir
Iy
=== SCONS 71



Adding Custom Command-Line Options; the
AddOpt i on Function

String for Get Opt i on and Set Opt i on Command-Line Option(s)
stack_si ze --stack-si ze
taskmastertrace file --taskmastertrace
war n --warn - -warni ng

10.1.5. Adding Custom Command-Line Options: the
AddOpt i on Function

SCons aso alows you to define your own command-line options with the AddQpt i on function. The AddOpt i on
function takes the same arguments astheadd_opt i on method from the standard Python library module optpar se. !

Once you add a custom command-line option with the AddQOpt i on function, the value of the option (if any) is
immediately available using the standard Get Opt i on function. The argument to Get Opt i on must be the name
of the variable which holds the option. If the dest keyword argument to AddOpt i on is specified, the value is the
variable name. given. If not given, it is the name (without the leading hyphens) of the first long option name given to
AddOpt i on after replacing any remaining hyphen characters with underscores, since hyphensare not legal in Python
identifier names.

Set Opt i on isnot currently supported for options added with AddOpt i on.

One useful example of using this functionality isto provide a- - pr ef i x to help describe whereto install files:

AddOpt i on(
"--prefix',
dest='prefix",
type="string',
nar gs=1,
action='store',
metavar='DI R,
hel p="installation prefix',

)
env = Environment ( PREFI X=CGet Opti on(' prefix'))

installed_foo = env.Install (' $PREFI X/ usr/bin', 'foo.in")
Def aul t (i nstal | ed_f 0o0)

The above code usesthe Get Opt i on function to set the $PREFI X construction variable to avalue you specify witha
command-line option of - - pr ef i x. Because $PREFI X expandsto anull string if it's not initialized, running SCons
without the option of - - pr ef i x installsthefileinthe/ usr/ bi n/ directory:

% scons -Q -n
Install file: "foo.in" as "/usr/bin/foo.in"

But specifying - - prefi x=/tnp/install on the command line causes the file to be installed in the / t np/
i nstall/usr/bin/ directory:

% scons -Q -n --prefix=/tnp/install
Install file: "foo.in" as "/tnp/install/usr/bin/foo.in"

1TheAddQ)t i on function is, in fact, implemented using a subclass of opt par se. Opt i onPar ser .

Iy
=== SCONS 72



Command-Linevar i abl e=val ue Build Variables

Note

Option-arguments separated from long options by whitespace, rather than by an =, cannot be correctly
resolved by SCons. While - - i nput =ARG is clearly opt followed by arg, for - -i nput ARG it is not
possibletotell without instructionswhether ARGisan argument belongingtothei nput option or apositional
argument. SCons treats positional arguments as either command-line build options or command-line targets
which are made available for usein an SConscri pt (seethe immediately following sections for details).
Thus, they must be collected before SConscr i pt processing takes place. Since AddOpt i on calls, which
provide the processing instructions to resolve any ambiguity, happen in an SConscr i pt , SCons does not
know in time for options added this way, and unexpected things happen, such as option-arguments assigned
as targets and/or exceptions due to missing option-arguments.

As aresult, this usage style should be avoided when invoking scons. For single-argument options, use the
- - i nput =ARG form on the command line. For multiple-argument options (nar gs greater than one), set
nar gs toonein AddOpt i on callsand either: combine the option-argumentsinto one word with aseparator,
and parse the result in your own code (see the built-in - - debug option, which alows specifying multiple
arguments as a single comma-separated word, for an example of such usage); or alow the option to be
specified multiple times by setting act i on=" append' . Both methods can be supported at the same time.

10.2. Command-Line vari abl e=val ue Build
Variables

Y ou may want to control various aspects of your build by allowing var i abl e=val ue valuesto be specified on the
command line. For example, suppose you want to be able to build a debug version of a program by running SCons
asfollows:

% scons - Q debug=1

SCons provides an ARGUMENTS dictionary that storesall of thevar i abl e=val ue assignmentsfrom the command
line. This alows you to modify aspects of your build in response to specifications on the command line. (Note that
unless you want to require avariable always be specified you probably want to use the Python dictionary get method,
which alows you to designate a default value to be used if there is no specification on the command line.)

The following code sets the $CCFLAGS construction variable in response to the debug flag being set in the
ARGUMENTS dictionary:

env = Environnent ()
debug = ARGUMENTS. get (' debug', 0)
i f int(debug):
env. Append( CCFLAGS=' - g' )
env. Progran(' prog.c')

Thisresultsin the - g compiler option being used when debug=1 is used on the command line;

% scons - Q debug=0

CC -0 prog.o -c prog.c
CC -0 prog prog.o

% scons - Q debug=0

scons: ~.' is up to date.

Iy
=== SCONS 73



Controlling Command-Line Build Variables

% scons - Q debug=1
CC -0 prog.o -c -g prog.c
CC -0 prog prog.o
% scons - Q debug=1
scons: ' is up to date.

SCons keeps track of the precise command line used to build each object file, and as a result can determine that the
object and executable files need rebuilding when the value of the debug argument has changed.

The ARGUMENTS dictionary has two minor drawbacks. First, because it is a dictionary, it can only store one value
for each specified keyword, and thus only "remembers’ the last setting for each keyword on the command line. This
makes the ARGUMENTS dictionary less than ideal if you want to allow specifying multiple values on the command
line for a given keyword. Second, it does not preserve the order in which the variable settings were specified, which
is a problem if you want the configuration to behave differently in response to the order in which the build variable
settings were specified on the command line.

To accomodate these requirements, SCons provides an ARGLI ST variable that gives you direct access to
var i abl e=val ue settings on the command line, in the exact order they were specified, and without removing any
duplicate settings. Each element in the ARGLI ST variable isitself atwo-element list containing the keyword and the
value of the setting, and you must loop through, or otherwise select from, the elements of ARGLI ST to process the
specific settings you want in whatever way is appropriate for your configuration. For example, the following code lets
you add to the CPPDEFI NES construction variable by specifying multiple def i ne= settings on the command line:

cppdefines = []
for key, value in ARGLI ST:
if key == 'define':
cppdefi nes. append( val ue)
env = Environment ( CPPDEFI NES=cppdef i nes)
env. Qbj ect (' prog.c')

Yields the following output:

% scons - Q defi ne=FQO

CC -0 prog.o -c -DFQOO prog.c

% scons -Q defi ne=FOO defi ne=BAR
CC -0 prog.o -c -DFQCO - DBAR prog.c

Note that the ARGLI ST and ARGUMENTS variables do not interfere with each other, but rather provide dightly
different viewsinto how you specified var i abl e=val ue settings on the command line. Y ou can use both variables
in the same SCons configuration. In general, the ARGUMENTS dictionary is more convenient to use, (since you can
just fetch variable settings through Python dictionary access), and the ARGLI ST list is more flexible (since you can
examine the specific order in which the command-line variable settings were given).

10.2.1. Controlling Command-Line Build Variables

Being ableto use acommand-line build variable likedebug=1 ishandy, but it can be achoreto write specific Python
code to recognize each such variable, check for errors and provide appropriate messages, and apply the values to a
construction variable. To help with this, SCons provides a Var i abl es class to define such build variables easily,
and a mechanism to apply the build variables to a construction environment. This allows you to control how the build
variables affect construction environments.

For example, suppose that you want to set a RELEASE construction variable on the command line whenever thetime
comesto build a program for release, and that the value of this variable should be added to the command line with the

Iy
=== SCONS 74



Providing Help for Command-Line Build Variables

appropriate define to pass the value to the C compiler. Here's how you might do that by setting the appropriate value
in adictionary for the $CPPDEFI NES construction variable:

vars = Vari abl es(None, ARGUMENTS)

vars. Add(' RELEASE , def aul t =0)

env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${ RELEASE}'})
env. Program(['foo.c', "bar.c'])

This SConst r uct file first creates a Var i abl es object which uses the values from the command-line options
dictionary ARGUVENTS (thevar s=Var i abl es(None, ARGUVENTS) call). It then usesthe object's Add method
to indicate that the RELEASE variable can be set on the command line, and that if not set the default value is 0. The
newly created Var i abl es object is passed to the Envi r onnent call used to create the construction environment
usingavari abl es keyword argument. This then alows you to set the RELEASE build variable on the command
line and have the variable show up in the command line used to build each object from a C sourcefile:

% scons - Q RELEASE=1
CC -0 bar.o -c -DRELEASE BU LD=1 bar.c
cc -o foo.o -c -DRELEASE BU LD=1 foo.c
cc -o foo foo.o bar.o

Historical note: In old SCons (prior to 0.98.1), these build variables were known as "command-line build options." At
that time, class was named Opt i ons and the predefined functions to construct options were named Bool Opt i on,
EnunmOpti on, Li st Opti on, Pat hOpti on, PackageQpti on and AddOpt i ons (contrast with the current
names in Section 10.2.4, “Pre-Defined Build Variable Functions’, below). Y ou may encounter these names in older
SConscri pt files, wiki pages, blog entries, StackExchange articles, etc. These old names no longer work, but a
mental substitution of “Variable” for “Option” allows the conceptsto transfer to current usage models.

10.2.2. Providing Help for Command-Line Build Variables

To make command-line build variables most useful, you ideally want to provide some hel p text to describethe available
variables when the you ask for help (run scons - h). You can write this text by hand, but SCons provides some
assistance. Variables objects provide a Gener at eHel pText method the generate text that describes the various
variables that have been added to it. The default text includes the help string itself plus other information such as
allowed values. (The generated text can al so be customized by replacingthe For mat Var i abl eHel pText method).
Y ou then pass the output from this method to the Hel p function:

vars = Vari abl es( None, ARGUVMENTS)

vars. Add(' RELEASE' , help="Set to 1 to build for rel ease', default=0)
env = Environnent (vari abl es=vars)

Hel p(vars. Gener at eHel pText (env))

SCons now displays some useful text when the - h option is used:

% scons -Q -h

RELEASE: Set to 1 to build for rel ease
default: O

actual: 0

Use scons -H for hel p about command-|ine options.

Iy
=== SCONS 75



Reading Build Variables From aFile

Y ou can see the help output shows the default value as well as the current actual value of the build variable.

10.2.3. Reading Build Variables From a File

Being able to to specify the value of a build variable on the command line is useful, but can still become tedious if
you have to specify the variable every time you run SCons. To make this easier, you can provide customized build
variable settingsin alocal file by providing afile name when the Var i abl es object is created:

vars = Vari abl es(' custom py')

vars. Add(' RELEASE', help="Set to 1 to build for rel ease', default=0)

env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${ RELEASE}'})
env. Program(['foo.c', 'bar.c'])

Hel p(vars. Gener at eHel pText (env))

This then allows you to control the RELEASE variable by setting itinthe cust om py file:
RELEASE = 1

Note that thisfile is actually executed like a Python script. Now when you run SCons:

% scons -Q

CC -0 bar.o -c -DRELEASE BU LD=1 bar.c
cc -o foo.o -c -DRELEASE BU LD=1 foo.c
cc -o foo foo.o0 bar.o

And if you change the contents of cust om py to:
RELEASE = 0

The object files are rebuilt appropriately with the new variable:

% scons -Q

CC -0 bar.o -c -DRELEASE BU LD=0 bar.c
cc -0 foo.o0 -c -DRELEASE BU LD=0 foo.c
cc -o foo foo.o bar.o

Finally, you can combine both methods with:
vars = Variabl es(' custom py', ARGUVENTS)

where values in the option file cust om py get overwritten by the ones specified on the command line.

10.2.4. Pre-Defined Build Variable Functions

SCons provides anumber of convenience functions that provide ready-made behaviorsfor various types of command-
line build variables. These functions all return a tuple which is ready to be passed to the Add or AddVari abl es
method call. You are of course free to define your own behaviors as well.

Iy
=== SCONS 76



Pre-Defined Build Variable Functions

10.2.4.1. Truel/False Values: the Bool Vari abl e Build Variable
Function

It is often handy to be able to specify avariable that controls asimple Boolean variable with at r ue or f al se value.
It would be even more handy to accomodate different preferences for how to represent t r ue or f al se values. The
Bool Var i abl e function makesit easy to accomodate these common representations of t r ue or f al se.

The Bool Var i abl e function takes three arguments. the name of the build variable, the default value of the build
variable, and the help string for the variable. It then returns appropriate information for passing to the Add method
of aVari abl es object, like so:

vars = Vari abl es(' custom py')

vars. Add( Bool Vari abl e(' RELEASE' , hel p="Set to build for rel ease', default=False))
env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${RELEASE}'})
env. Progran(' foo.c')

With this build variable in place, the RELEASE variable can now be enabled by setting it to thevalueyes ort :

% scons - Q RELEASE=yes fo00.0
cc -0 foo.o0 -c -DRELEASE BUI LD=True foo.c

% scons - Q RELEASE=t fo0o0.0
cc -0 foo.o -c -DRELEASE BUI LD=True foo.c

Other valuesthat equatetot r ue includey, 1, onandal | .
Conversely, RELEASE may now be given af al se value by settingittono or f :

% scons - Q RELEASE=no fo0o0.0
cc -o foo.o -c -DRELEASE BUI LD=Fal se foo.c

% scons - Q RELEASE=f fo0o0.o0
cc -o foo.o -c -DRELEASE BUI LD=Fal se foo.c

Other valuesthat equateto f al se includen, 0, of f and none.
Lastly, if you try to specify any other value, SCons supplies an appropriate error message:

% scons - Q RELEASE=bad_val ue foo.o0

scons: *** Error converting option: RELEASE
Invalid val ue for bool ean option: bad _val ue
File "/home/ ny/ project/SConstruct”, line 3, in <nmodul e>

10.2.4.2. Single Value From a Selection: the Enunvar i abl e Build
Variable Function

Suppose that you want to allow setting a COLOR variable that selects a background color to be displayed by an
application, but that you want to restrict the choices to a specific set of alowed colors. You can set this up quite
easily usingthe EnunVar i abl e function, whichtakesalist of al | owed_val ues inaddition to the variable name,
default value, and help text arguments:

Iy
=== SCONS 77



Pre-Defined Build Variable Functions

vars = Vari abl es(' custom py')
vars. Add(
EnunVar i abl e(
' COLOR'
hel p=' Set background col or",
default="red",
al | owed_val ues=('red', 'green', 'blue'),
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})

env. Program(' foo.c')
Hel p(vars. Gener at eHel pText (env))

Y ou can now explicitly set the COLOR build variable to any of the specified allowed values:

% scons -Q COLOR=red foo0.0

cc -0 foo.o -c -DCOLOR="red" foo.cC
% scons - Q COLOR=bl ue foo.o0

cc -o foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=green foo0.0

cc -o foo.o -c -DCOLOR="green" foo.c

But, importantly, an attempt to set COLOR to avalue that's not in the list generates an error message:

% scons - Q COLOR=magenta fo0o0.o0

scons: *** |nvalid value for option COLOR magenta. Valid values are: ('red',
File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>

This example can aso serve to further illustrate help generation: the help message here picks up not only the hel p
text, but augments it with information gathered from al | owed_val ues anddef aul t :

% scons -Q -h

COLOR  Set background col or (red|green| bl ue)
default: red
actual: red

Use scons -H for hel p about command-Iine options.

The EnunVar i abl e function also provides away to map alternate namesto alowed values. Suppose, for example,
you want to alow the word navy to be used as a synonym for bl ue. You do this by adding a map dictionary that
maps its key values to the desired allowed value:

vars = Vari abl es(' custom py')
vars. Add(
EnunVar i abl e(
' COLOR
hel p=' Set background col or",
defaul t="red'
al | owed_val ues=('red', 'green', 'blue'),
map={' navy': 'blue'},

b4

SCONS 78

'green'



Pre-Defined Build Variable Functions

)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})

env. Program(' foo.c')
Now you can supply navy on the command line, and SCons translates that into bl ue when it comes time to use the
COLORVvariableto build atarget:

% scons -Q COLOR=navy foo0.0
cc -o foo.o -c -DCOLOR="bl ue" foo.c

By default, when using the Enunar i abl e function, the allowed values are case-sensitive:

% scons -Q COLOR=Red fo0o0.0

scons: *** |nvalid value for option COLOR Red. Valid values are: ('red', 'green',
File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>
% scons -Q COLOR=BLUE f 00. o0

scons: *** |nvalid value for option COLOR BLUE. Valid values are: ('red', 'green',

File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>
% scons -Q COLOR=nAVY fo00.0

scons: *** |nvalid value for option COLOR nAvY. Valid values are: ('red', 'green',

File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>

The EnunVar i abl e function can take an additional i gnor ecase keyword argument that, when set to 1, tells
SConsto allow case differences when the values are specified:

vars = Vari abl es(' custom py')
vars. Add(
Enunvari abl e(
' COLOR
hel p=' Set background col or',
default="red",
al | owed _val ues=('red', 'green', 'blue'),
map={' navy': 'blue'},
i gnor ecase=1,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Program(' foo.c')

Which yields the output:

% scons -Q COLOR=Red fo0o0.0

cc -0 foo.o0 -c -DCOLOR="Red" foo0.cC
% scons -Q COLOR=BLUE f 00. o0

cc -o foo.o -c -DCOLOR="BLUE" foo0.cC
% scons -Q COLOR=nAVY fo00.0

cc -0 foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=green foo0.0

cc -o foo.o -c -DCOLOR="green" foo.c

Iy
=== SCONS 79

" bl ue'

" bl ue

" bl ue



Pre-Defined Build Variable Functions

Notice that an i gnor ecase value of 1 preserves the case-spelling supplied, only ignoring the case for matching.
If you want SCons to trandate the names into lower-case, regardless of the case used by the user, specify an
i gnor ecase vaueof 2;

vars = Vari abl es(' custom py')
var s. Add(
EnunVar i abl e(
' COLOR
hel p=' Set background col or',
defaul t="red",
al | owed_val ues=('red', 'green', 'blue'),
map={"' navy': 'blue'},
i gnor ecase=2,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Progran(' foo.c')

Now SCons usesvalues of r ed, gr een or bl ue regardless of how those values are spelled on the command line:

% scons - Q COLOR=Red foo0.0

cc -o foo.o -c -DCOLOR="red" foo0.cC
% scons -Q COLOR=nAVY foo0.0

cc -o foo.o -c -DCOLOR="Dbl ue" foo.c
% scons - Q COLOR=GREEN f 00. 0

cc -o foo.o -c -DCOLOR="green" foo.c

10.2.4.3. Multiple Values From a List: the Li st Vari abl e Build
Variable Function

Another way in which you might want to control abuild variable is to specify alist of allowed values, of which one
or more can be chosen (where Enunar i abl e alows exactly one value to be chosen). SCons provides this through
the Li st Var i abl e function. If, for example, you want to be able to set a COLORS variable to one or more of the
allowed values:

vars = Vari abl es(' custom py')
vars. Add(
Li st Vari abl e(
'COLORS', hel p='List of colors', default=0, nanes=['red', 'green', 'blue']
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLORS' : '"${COLORS}"'})
env. Program(' foo.c')

You can now specify a comma-separated list of allowed values, which get trandated into a space-separated list for
passing to the build commands:

% scons - Q COLORS=red, bl ue foo.o0

cc -0 foo.o0 -c -DCOLORS="red - Dbl ue" foo.c

% scons - Q COLORS=bl ue, green, red foo.o0

cc -0 foo.0 -c -DCOLORS="bl ue -Dgreen -Dred" foo.c

Iy
=== SCONS 80



Pre-Defined Build Variable Functions

In addition, the Li st Var i abl e function lets you specify explicit keywords of al | or none to select al of the
allowed values, or none of them, respectively:

% scons -Q COLORS=al | foo.0

cc -o foo.o -c -DCOLORS="red -Dgreen -Dblue" foo.c
% scons - Q COLORS=none fo00.0

cc -o foo.o -c -DCOLORS="" foo.cC

And, of course, anillegal value still generates an error message:

% scons - Q COLORS=magenta foo.o0

scons: *** Error converting option: COLORS
Invalid val ue(s) for option: nagenta
File "/home/ ny/ project/SConstruct”, line 7, in <nmodul e>

You can use this last characteristic as a way to enforce at least one of your valid options being chosen by specifying
the valid values with the nanmes parameter and then giving avalue not in that list as the def aul t parameter - that
way if no valueis given on the command line, the default is chosen, SCons errors out as thisis invalid. The example
is, in fact, set up that way by using O asthe default:

% scons -Q foo.o0

scons: *** Error converting option: COLORS
Invalid val ue(s) for option: 0
File "/home/ ny/ project/SConstruct”, line 7, in <nmodul e>

This technique works for Enuniar i abl e aswell.

10.2.4.4. Path Names: the Pat hVari abl e Build Variable Function

SCons provides a Pat hVar i abl e function to make it easy to create a build variable to control an expected path
name. If, for example, you need to define a preprocessor macro that controls the location of a configuration file:

vars = Vari abl es(' custom py')
vars. Add(
Pat hVari abl e(
"CONFI G, help="Path to configuration file', default="/etc/my_config'
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' CONFI G FILE : '"$CONFI G''})
env. Program' foo.c')

This allows you to override the CONFI G build variable on the command line as necessary:

% scons -Q foo.o0

cc -o foo.o -c -DCONFI G FI LE="/etc/ ny_config" foo.c
% scons - Q CONFI G=/ usr/ | ocal /etc/other_config foo.o
scons: foo.0' is up to date.

By default, Pat hVar i abl e checksto make sure that the specified path exists and generates an error if it doesn't:

% scons - Q CONFI G=/ does/ not/ exi st foo0.0

scons: *** Path for option CONFI G does not exist: /does/not/exist

Iy
=== SCONS 81



Pre-Defined Build Variable Functions

File "/home/ ny/ project/SConstruct”, line 7, in <nmodul e>

Pat hVar i abl e provides anumber of methods that you can use to change this behavior. If you want to ensure that
any specified paths are, in fact, files and not directories, use the Pat hVar i abl e. Pat hl sFi | e method as the
validation function:

vars = Vari abl es(' custom py')
var s. Add(
Pat hVar i abl e(
' CONFI G,
hel p=' Path to configuration file',
default="/etc/ny_config',
val i dat or =Pat hVar i abl e. Pat hl sFi | e,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' CONFI G FILE : '"$CONFIG''})
env. Progran(' foo.c')

Conversely, to ensure that any specified paths are directories and not files, use the Pat hVar i abl e. Pat hl sDi r
method as the validation function:

vars = Vari abl es(' custom py')
vars. Add(
Pat hVari abl e(
"DBDI R,
hel p=' Path to dat abase directory',
defaul t="/var/ny_dbdir",
val i dat or =Pat hVari abl e. Pat hl sDi r,
)
)
env = Environnent (vari abl es=vars, CPPDEFINES={'DBDIR : '"$DBDIR''})
env. Progran(' foo.c')

If you want to make sure that any specified paths are directories, and you would like the directory created if it doesn't
already exist, usethe Pat hVar i abl e. Pat hl sDi r Cr eat e method as the validation function:

vars = Vari abl es(' custom py')
var s. Add(
Pat hVar i abl e(
'DBDI R,
hel p=' Path to dat abase directory',
defaul t="/var/ny_dbdir"',
val i dat or =Pat hVari abl e. Pat hl sDi r Cr eat e,
)
)
env = Environnent (vari abl es=vars, CPPDEFINES={'DBDIR : '"$DBDIR''})
env. Progran(' foo.c')

Lastly, if you don't care whether the path exists, is afile, or a directory, use the Pat hVvar i abl e. Pat hAccept
method to accept any path you supply:

Iy
=== SCONS 82



Adding Multiple Command-Line Build Variables at Once

vars = Vari abl es(' custom py')
vars. Add(
Pat hVar i abl e(
" QUTPUT" ,
hel p="Path to output file or directory',
def aul t =None,
val i dat or =Pat hVar i abl e. Pat hAccept ,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' QUTPUT' : ' "$OQUTPUT"'})
env. Program(' foo.c')

10.2.4.5. Enabled/Disabled Path Names: the PackageVar i abl e
Build Variable Function

Sometimes you want to give even more control over a path name variable, allowing them to be explicitly enabled or
disabled by using yes or no keywords, in addition to allowing supplying an explicit path name. SCons provides the
PackageVar i abl e function to support this:

vars = Vari abl es("custom py")
vars. Add(

PackageVari abl e( " PACKAGE", hel p="Locati on package", default="/opt/location")
)

env = Environnent (vari abl es=vars, CPPDEFI NES={" PACKAGE": '"$PACKAGE"'})
env. Program("foo.c")

When the SConscri pt file uses the PackageVari abl e function, you can still use the default or supply an
overriding path name, but you can now explicitly set the specified variable to avalue that indicates the package should
be enabled (in which case the default should be used) or disabled:

% scons -Q foo.0

cc -o foo.o -c - DPACKAGE="/opt/| ocation" foo.c

% scons - Q PACKAGE=/usr /| ocal /|l ocation foo.0

cc -o foo.o -c - DPACKAGE="/usr/|ocal /|l ocation" foo.c
% scons - Q PACKAGE=yes f00.0

cc -0 foo.o0 -c - DPACKAGE="True" foo.c

% scons - Q PACKAGE=no fo00.o0

cc -o foo.o -c - DPACKAGE="Fal se" foo.c

10.2.5. Adding Multiple Command-Line Build Variables at
Once

Lastly, SCons provides away to add multiple build variablesto aVar i abl es object at once. Instead of having to call
the Add method multiple times, you can call the AddVar i abl es method with the build variables to be added to the
object. Each build variable is specified as either atuple of arguments, or as a call to one of the pre-defined functions
for pre-packaged command-line build variables, which returns such a tuple. Note that an individual tuple cannot take
keyword arguments in the way that a call to Add or one of the build variable functions can. The order of variables
givento AddVar i abl es does not matter.

Iy
=== SCONS 83



Handling Unknown Command-Line Build Variables: the
UnknownVar i abl es Function

vars = Vari abl es()
vars. AddVar i abl es(
("RELEASE', 'Set to 1 to build for rel ease', 0),
("CONFIG, '"Configuration file', '/etc/ny_config'),
Bool Vari abl e(* war ni ngs', hel p='conpilation with -Wall and sinmliar', default=True),
EnunVar i abl e(
' debug’ ,
hel p=' debug out put and synbol s',
def aul t =" no',
al | owed_val ues=("'yes', 'no', 'full"),
map={},
i gnor ecase=0,
).
Li st Vari abl e(
'shared',
hel p="libraries to build as shared libraries",
default="al | ",
nanmes=li st _of |ibs,
).
PackageVar i abl e(
'x11', hel p="use X11 installed here (yes = search some places)', default='yes'
).
Pat hVari abl e(* gqtdir', hel p="where the root of @ is installed , default=qtdir),

10.2.6. Handling Unknown Command-Line Build
Variables: the UnknownVar i abl es Function

Humans, of course, occasionally misspell variable namesin their command-line settings. SCons does not generate an
error or warning for any unknown variables specified on the command line, because it can not reliably tell whether
a given "misspelled” variable is really unknown and a potential problem or not. After all, you might be processing
arguments directly using ARGUMENTS or ARGLI ST with some Python code in your SConscr i pt file.

If, however, youareusingaVar i abl es object to defineaspecific set of command-linebuild variablesthat you expect
to be able to set, you may want to provide an error message or warning of your own if avariable setting is specified
that is not among the defined list of variable names known to the Var i abl es object. Y ou can do this by calling the
UnknownVar i abl es method of the Var i abl es object to get the settings VVar i abl es did not recognize:

vars = Vari abl es( None)
vars. Add(' RELEASE' , help="Set to 1 to build for rel ease', default=0)
env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${RELEASE}'})
unknown = vars. UnknownVari abl es()
i f unknown:
print("Unknown variables: %" %" ".join(unknown. keys()))
Exit (1)
env. Progran(' foo.c')

TheUnknownVar i abl es method returnsadictionary containing the keywords and values of any variables specified
on the command line that are not among the variables known to the Var i abl es object (from having been specified

Iy
=== SCONS 84



Command-Line Targets

using the Vari abl es object's Add method). The example above, checks whether the dictionary returned by
UnknownVar i abl es isnon-empty, and if so prints the Python list containing the names of the unknown variables
and then callsthe Exi t function to terminate SCons:

% scons - Q NOT_KNOWN=f oo
Unknown vari abl es: NOT_KNOMWN

Of course, you can process the items in the dictionary returned by the UnknownVar i abl es function in any way
appropriate to your build configuration, including just printing a warning message but not exiting, logging an error
somewhere, etc.

Note that you must delay the call of UnknownVar i abl es until after you have applied the Var i abl es objecttoa
construction environment with the var i abl es= keyword argument of an Envi r onment call: the variablesin the
object are not fully processed until this has happened.

10.3. Command-Line Targets

10.3.1. Fetching Command-Line Targets: the
COMVAND LI NE TARCETS Variable

SCons provides a COVWAND LI NE_TARGETS variable that lets you fetch the list of targets that were specified on
the command line. Y ou can use the targets to manipul ate the build in any way you wish. Asasimple example, suppose
that you want to print a reminder whenever a specific program is built. You can do this by checking for the target in
the COMWAND_LI NE_TARGETS list:

if "bar' in COMVAND LI NE_TARGETS:

print("Don't forget to copy bar' to the archive!")
Def aul t (Progran(' foo.c'))
Program(' bar.c')

Now, running SCons with the default target works as usual, but explicity specifying the bar target on the command
line generates the warning message:

% scons -Q

cc -o foo.o -c foo.c

cc -o foo foo.o

% scons -Q bar

Don't forget to copy bar' to the archive!
CC -0 bar.o -c bar.c

CC -0 bar bar.o

Another practical use for the COMMAND_LI NE_TARCETS variable might be to speed up a build by only reading
certain subsidiary SConscri pt filesif aspecific target is requested.

10.3.2. Controlling the Default Targets: the Def aul t
Function

Y ou can control whichtargets SConsbuildsby default - that is, when there are no targets specified on the command line.
As mentioned previously, SCons normally builds every target in or below the current directory unless you explicitly
specify one or more targets on the command line. Sometimes, however, you may want to specify that only certain
programs, or programs in certain directories, should be built by default. Y ou do thiswith the Def aul t function:

Iy
=== SCONS 85



Controlling the Default Targets. the Def aul t Function

env = Environment ()

hell o = env. Progran(' hello.c")
env. Progran(' goodbye. c')

Def aul t (hel | o)

ThisSConst r uct fileknowshow to build two programs, hel | o andgoodbye, but only buildsthehel | o program
by default:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q

scons: " hello' is up to date
% scons - Q goodbye

cc -0 goodbye.o -c goodbye. c
cc -0 goodbye goodbye. o

Note that, even when you use the Def aul t function in your SConst r uct file, you can still explicitly specify the
current directory (. ) on the command line to tell SConsto build everything in (or below) the current directory:

% scons -Q .

cc -0 goodbye.o -c goodbye. c
cc -0 goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

You can aso call the Def aul t function more than once, in which case each call adds to the list of targets to be
built by default:

env = Environment ()

progl = env. Progran(' progl.c')
Def aul t ( progl)

prog2 = env. Progran(' prog2.c')
prog3 = env. Progran(' prog3.c')
Def aul t ( pr og3)

Or you can specify more than onetarget in asingle call to the Def aul t function;

env = Environment ()

progl = env. Progran(' progl.c')
prog2 = env. Progran(' prog2.c')
prog3 = env. Progran(' prog3.c')
Def aul t (progl, prog3)

Either of these last two examples build only the progl and prog3 programs by default:

% scons -Q

cc -0 progl.o -c progl.c
cCc -0 progl progl.o

cc -0 prog3.0 -c prog3.c

Iy
=== SCONS 86



Controlling the Default Targets. the Def aul t Function

cc -0 prog3 prog3.o0

% scons -Q .

CC -0 prog2.o0 -c prog2.c
CC -0 prog2 prog2.o0

You can list adirectory as an argument to Def aul t :

env = Environment ()

env. Progran([' progl/ main.c', 'progl/foo.c'])
env. Progran([' prog2/ main.c', 'prog2/bar.c'])
Def aul t (" progl')

In which case only the target(s) in that directory are built by default:

% scons -Q

cc -0 progl/foo.o -c progl/foo.c

cc -0 progl/main.o -c progl/ main.c

cCc -0 progl/ main progl/ main.o progl/foo.o
% scons -Q

scons: "progl' is up to date.

% scons -Q .

CC -0 prog2/bar.o -c prog2/bar.c

CC -0 prog2/main.o -c prog2/ main.c

CC -0 prog2/ main prog2/ main.o prog2/ bar.o

Lastly, if for some reason you don't want any targets built by default, you can use the Python None variable:

env = Environment ()

progl = env. Progran(' progl.c')
prog2 = env. Progran(' prog2.c')
Def aul t ( None)

Which would produce build output like:

% scons -Q

scons: *** No targets specified and no Default() targets found. Stop.
Found nothing to build

% scons -Q .

cc -0 progl.o -c progl.c

cc -0 progl progl.o

CC -0 prog2.0 -c prog2.c

CC -0 prog2 prog2.o0

10.3.2.1. Fetching the List of Default Targets: the DEFAULT TARGETS
Variable

SCons provides a DEFAULT_TARGETS variable that lets you get at the current list of default targets specified by
calstotheDef aul t function or method. The DEFAULT _TARGETS variable has two important differencesfrom the
COMVAND LI NE_TARCGETS variable. First, the DEFAULT _TARGETS variableisalist of internal SCons nodes, so
you need to convert the list elements to strings if you want to print them or look for a specific target name. Y ou can
do thiseasily by calling the st r onthe elementsin alist comprehension:

Iy
=== SCONS 87



Fetching the List of Build Targets, Regardless of Origin:
theBUI LD_TARGETS Variable

progl = Progran(' progl.c')
Def aul t (progl)
print (" DEFAULT_TARGETS is %" % [str(t) for t in DEFAULT_TARGETS])

(Keep in mind that all of the manipulation of the DEFAULT_TARGETS list takes place during the first phase when
SConsisreading up the SConscr i pt files, which is obviousif you leave off the - Qflag when you run SCons:)

% scons

scons: Readi ng SConscript files ...
DEFAULT _TARGETS is ['progl']

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 progl.o -c progl.c

cc -0 progl progl.o

scons: done buil ding targets.

Second, the contents of the DEFAULT_TARGETS list changes in response to calls to the Def aul t function, as you
can see from the following SConst r uct file:

progl = Progran(' progl.c')

Def aul t (progl)

print (" DEFAULT _TARGETS is now %" % [str(t) for t in DEFAULT TARGETS])
prog2 = Progran(' prog2.c')

Def aul t ( pr og2)

print ("DEFAULT _TARGETS is now %" % [str(t) for t in DEFAULT TARGETS])

Which yields the output:

% scons

scons: Readi ng SConscript files ...
DEFAULT _TARGETS is now [' progl']
DEFAULT _TARGETS is now ['progl', 'prog2']
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 progl.o -c progl.c

cC -0 progl progl.o

CC -0 prog2.o0 -c prog2.c

CC -0 prog2 prog2.o0

scons: done buil ding targets.

In practice, this simply means that you need to pay attention to the order in which you call the Def aul t function
and refer to the DEFAULT _TARGETS list, to make sure that you don't examine the list before you have added the
default targets you expect to find in it.

10.3.3. Fetching the List of Build Targets, Regardless of
Origin: the BU LD _TARGETS Variable

You have aready seen the COVWAND LI NE_TARGETS variable, which contains a list of targets specified on the
command line, and the DEFAULT_TARCGETS variable, which contains a list of targets specified via calls to the
Def aul t method or function. Sometimes, however, youwant alist of whatever targets SConstriesto build, regardless
of whether the targets came from the command line or aDef aul t call. You could code this up by hand, as follows:

Iy
=== SCONS 88



Fetching the List of Build Targets, Regardless of Origin:
theBUI LD_TARGETS Variable

i f COMVAND_LI NE_TARCETS:

targets = COMVMAND_LI NE_TARGETS
el se:

targets = DEFAULT_TARCETS

SCons, however, provides a convenient BUI LD TARCGETS variable that eliminates the need for this by-hand
manipulation. Essentially, the BUIl LD_TARGETS variable contains a list of the command-line targets, if any were
specified, and if no command-line targets were specified, it contains a list of the targets specified via the Def aul t
method or function.

Because BUI LD_TARGETS may contain alist of SCons nodes, you must convert the list elements to strings if you
want to print them or look for a specific target name, just like the DEFAULT_TARGETS list:

progl = Progran(' progl.c')

Program(' prog2.c')

Def aul t ( progl)

print("BU LD TARGETS is %" % |[str(t) for t in BU LD TARCGETS])

Notice how the value of BUI LD _TARGETS changes depending on whether atarget is specified on the command line
- BUI LD_TARCETS takes from DEFAULT_TARGETS only if there are no COVMAND_LI NE_TARCGETS:

% scons -Q

BU LD TARGETS is ['progl']
cc -0 progl.o -c progl.c
cc -0 progl progl.o

% scons -Q prog2

BUI LD TARGETS is ['prog2']
CC -0 prog2.o0 -c prog2.c
CC -0 prog2 prog2.o0

% scons -Q -c .

BU LD TARGETS is ['."]
Renoved progl. o

Renoved progl

Renoved prog2.o

Renoved prog2

Iy
=== SCONS 89



11 Installing Files in Other

Directories: the | nst al |
Builder

Once a program is built, it is often appropriate to install it in another directory for public use. You usethel nst al |
method to arrange for a program, or any other file, to be copied into a destination directory:

env = Environnent ()
hell o = env. Progran(' hello.c")
env.Install ('/usr/bin', hello)

Note, however, that installing afileis still considered atype of file"build.” Thisisimportant when you remember that
the default behavior of SConsisto build filesin or below the current directory. If, asin the example above, you are
installing filesin adirectory outside of thetop-level SConst r uct file'sdirectory tree, you must specify that directory
(or ahigher directory, such as/ ) for it to install anything there:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q /usr/bin

Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersome to remember (and type) the specific destination directory in which the program (or
other file) should be installed. A call to Def aul t can be used to add the directory to the list of default targets,
removing the need to type it, but sometimes you don't want to install on every build. Thisisan areawherethe Al i as
function comes in handy, alowing you, for example, to create a pseudo-target named i nst al | that can expand to
the specified destination directory:

env = Environnent ()

hell o = env. Progran(' hello.c')
env.Install ('/usr/bin', hello)
env.Alias('install', '/usr/bin")

This then yields the more natural ability to install the program in its destination as a separate invocation, as follows:



Installing Multiple Filesin a Directory

% scons -Q

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q instal

Install file: "hello" as "/usr/bin/hello"

11.1. Installing Multiple Files in a Directory

You caninstall multiple filesinto adirectory ssimply by calling thel nst al | function multiple times:

env = Environnent ()

hello = env. Progran(' hello.c")
goodbye = env. Progran(' goodbye.c')
env.Install ('/usr/bin', hello)
env.Install ('/usr/bin', goodbye)
env.Alias('install', '/usr/bin")

Or, more succinctly, listing the multiple input filesin alist (just like you can do with any other builder):

env = Environment ()

hell o = env. Progran(' hello.c")

goodbye = env. Progran{(' goodbye. c')
env.Install ('/usr/bin', [hello, goodbye])
env.Alias('install', '"/usr/bin")

Either of these two examplesyidlds:

% scons -Q instal

cc -0 goodbye.o -c goodbye. c

cc -o goodbye goodbye. o

Install file: "goodbye" as "/usr/bin/goodbye"
cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"

11.2. Installing a File Under a Different Name

Thel nst al I method preserves the name of the file when it is copied into the destination directory. If you need to
change the name of the file when you copy it, usethe | nst al | As function:

env = Environnent ()

hello = env. Progran(' hello.c")

env. I nstall As('/usr/bin/hello-new , hello)
env.Alias('install', '"/usr/bin")

Thisinstallsthe hel | o program with the name hel | o- newasfollows:

% scons -Q instal
cc -0 hello.o -c hello.c

Iy
=== SCONS 91



Installing Multiple Files Under Different Names

cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new

11.3. Installing Multiple Files Under Different
Names

If you have multiple files that al need to be installed with different file names, you can either call thel nst al | As
function multiple times, or as a shorthand, you can supply same-length lists for both the target and source arguments:

env = Environnent ()
hell o = env. Progran(' hello.c')
goodbye = env. Progran{(' goodbye. c')
env.Install As(['/usr/bin/hello-new ,
"/ usr/ bi n/ goodbye- new ],
[ hel | o, goodbye])
env.Alias('install', '/usr/bin")

In this case, the | nst al | As function loops through both lists simultaneously, and copies each source file into its
corresponding target file name:

% scons -Q instal

cc -0 goodbye.o -c goodbye. c

cc -o goodbye goodbye. o

Install file: "goodbye" as "/usr/bin/goodbye-new'
cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello-new

11.4. Installing a Shared Library

If ashared library is created with the $SHLI BVERSI ONvariable set, sconswill create symbolic links as needed based
on that variable. To properly install such alibrary including the symbolic links, usethe | nst al | Ver si onedLi b
function.

For example, on aLinux system, thisinstruction:
foo = env. SharedLi brary(target="fo00", source="foo.c", SHLIBVERSI ON="1.2.3")

Will produce a shared library | i bf 00. so. 1. 2. 3 and symbolic links | i bf 00. so and | i bf 00. so. 1 which
pointto | i bf 0o. so. 1. 2. 3. You can use the Node returned by the Shar edLi br ary builder in order to install
thelibrary and its symbolic links in one go without having to list them individually:

env. I nst al | Ver si onedLi b(target="1ib", source=fo00)

On systems which expect a shared library to be installed both with a name that indicates the version, for run-
time resolution, and as a plain name, for link-time resolution, the | nst al | Ver si onedLi b function can be used.
Symbolic links appropriate to the type of system will be generated based on symlinks of the source library.

Iy
=== SCONS 92



12 Platform-Independent File
System Manipulation

SCons provides a number of platform-independent functions, called f act or i es, that perform common file system
manipulations like copying, moving or deleting files and directories, or making directories. These functions are
fact ori es becausethey don't perform the action at the time they're called, they each return an Act i on object that
can be executed at the appropriate time.

12.1. Copying Files or Directories: The Copy
Factory

Suppose you want to arrange to make a copy of afile, and don't have a suitable pre-existing builder. 1 One way would
be to use the Copy action factory in conjunction with the Command builder:

Command("file.out", "file.in", Copy("$TARGET", "$SOURCE"))

Notice that the action returned by the Copy factory will expand the $TARGET and $SOURCE strings at the time
file.out ishbuilt, and that the order of the arguments is the same as that of a builder itself--that is, target first,
followed by source:

% scons -Q
Copy("file.out", "file.in")

Y ou can, of course, name afile explicitly instead of using $TARGET or $SOURCE:
Conmmand("file.out", [], Copy("S$TARGET", "file.in"))
Which executes as.

% scons -Q
Copy("file.out", "file.in")

1 Unfortunately, in the early days of SCons design, we used the name Copy for the function that returns a copy of the environment, otherwise that
would be the logical choice for aBuilder that copies afile or directory tree to atarget location.



Deleting Files or Directories: The Del et e Factory

The usefulness of the Copy factory becomes more apparent when you useitin alist of actions passed to the Command
builder. For example, suppose you needed to run afile through a utility that only modifies files in-place, and can't
"pipe" input to output. One solution isto copy the source file to atemporary file name, run the utility, and then copy
the modified temporary file to the target, which the Copy factory makes extremely easy:

Command(
“file.out",
“file.in",
action=[
Copy("tempfile", "$SOURCE"),
"modi fy tenpfile",
Copy (" $TARGET", "tenpfile"),
1,
)

The output then looks like:

% scons -Q

Copy("tenpfile", "file.in")
nodi fy tempfile
Copy("file.out", "tenpfile")

The Copy factory has athird optional argument which controls how symlinks are copied.

# Synbolic |ink shallow copied as a new synbolic |ink:
Command( " Li nkln", "LinkQut", Copy("$TARGET", "$SOURCE", sym inks=True))

# Synbolic link target copied as a file or directory:
Command( " Linkln", "FileO D rectoryQut", Copy("$TARGET", "S$SOURCE", sym inks=Fal se))

12.2. Deleting Files or Directories: The Del et e
Factory

If you need to delete a file, then the Del et e factory can be used in much the same way as the Copy factory. For
example, if we want to make sure that the temporary file in our last example doesn't exist before we copy to it, we
could add Del et e to the beginning of the command list:

Command(
"file.out",
"file.in",
acti on=[
Del ete("tenpfile"),
Copy("tenpfile", "$SOURCE"),
"modi fy tenpfile”,
Copy (" $TARGET", "tenpfile"),
1,
)
S
'—‘-‘SCONS 94



Moving (Renaming) Files or Directories. The Move
Factory

Which then executes as follows:

% scons -Q

Del ete("tenpfile")
Copy("tempfile”, "file.in")
nodi fy tempfile
Copy("file.out", "tenpfile")

Of course, like all of these Act i on factories, the Del et e factory also expands $TARGET and $SOURCE variables
appropriately. For example:

Comand(
"file.out",
"file.in",
acti on=[
Del et e( " $TARCET") ,
Copy (" $TARGET", "$SOURCE"),

1.

Executes as:

% scons -Q
Delete("file.out")
Copy("file.out", "file.in")

Note, however, that you typically don't need to call the Del et e factory explicitly in this way; by default, SCons
deletes its target(s) for you before executing any action.

One word of caution about using the Del et e factory: it has the same variable expansions available as any other
factory, including the $SOURCE variable. Specifying Del et e( " $SOURCE") is not something you usually want to
do!

12.3. Moving (Renaming) Files or Directories:
The Mbve Factory

The Mbve factory alows you to rename afile or directory. For example, if we don't want to copy the temporary file,
we could use:

Command(
"file.out",
"file.in",
act i on=[

Copy("tenpfile", "$SOURCE"),

"modi fy tenpfile”,

Move(" $TARGET", "tenmpfile"),
] 1

Iy
=== SCONS 95



Updating the Modification Time of aFile: The Touch
Factory

Which would execute as:
% scons -Q
Copy("tenpfile", "file.in")

nodi fy tempfile
Move("file.out", "tenpfile")

12.4. Updating the Modification Time of a File:
The Touch Factory

If you just need to update the recorded modification time for afile, use the Touch factory:

Command(
"file.out",
"file.in",
act i on=[

Copy (" $TARGET", "$SOURCE"),
Touch(" $TARCGET"),

Which executes as:

% scons -Q
Copy("file.out", "file.in")
Touch("file.out")

12.5. Creating a Directory: The Mkdi r Factory

If you need to create a directory, use the Mkdi r factory. For example, if we need to process a file in a temporary
directory in which the processing tool will create other files that we don't care about, you could use:

Command(
"file.out",
"file.in",
action=[

Del ete("tenpdir"),

Mkdir("tempdir"),

Copy("tenpdir/${SOURCE. file}", "$SOURCE"),
"process tenpdir",

Move(" $TARGET", "tenpdir/output_file"),

Del ete("tenpdir"),

Which executes as:

% scons -Q
Del ete("tenpdir™)

Iy
=== SCONS 96



Changing File or Directory Permissions: The Chnod
Factory

Mkdir("tenpdir")

Copy("tempdir/file.in", "file.in")

process tenpdir

Move("file.out", "tenpdir/output file")

scons: *** [file.out] tenpdir/output file: No such file or directory

12.6. Changing File or Directory Permissions:
The Chnod Factory

To change permissions on a file or directory, use the Chnod factory. The permission argument uses POSIX-style
permission bits and should typically be expressed as an octal, not decimal, number:

Command(
"file.out",
"file.in",
acti on=[

Copy (" $TARGET", "$SOURCE"),
Chnod(" $TARGET", 00755),

Which executes:

% scons -Q
Copy("file.out", "file.in")
Chnod("file.out", 00755)

12.7. Executing an action immediately: the
Execut e Function

We've been showing you how to use Act i on factories in the Conmrand function. Y ou can also execute an Act i on
returned by a factory (or actualy, any Acti on) at the time the SConscri pt fileisread by using the Execut e
function. For example, if we need to make sure that a directory exists before we build any targets,

Execute(Mkdir (' /tnp/ ny_tenp directory'))

Notice that thiswill create the directory whilethe SConscr i pt fileisbeing read:

% scons

scons: Readi ng SConscript files ...
Mkdir("/tmp/ nmy_tenp _directory")
scons: done readi ng SConscript files.
scons: Building targets ...

scons: ~.' is up to date.

scons: done buil ding targets.

If you're familiar with Python, you may wonder why you would want to use this instead of just calling the native
Python os. nkdi r () function. The advantage here is that the Mkdi r action will behave appropriately if the user

Iy
=== SCONS 97



Executing an action immediately: the Execut e Function

specifiesthe SCons - n or - g options--that is, it will print the action but not actually make the directory when - n is
specified, or make the directory but not print the action when - q is specified.

The Execut e function returnsthe exit status or return value of the underlying action being executed. It will also print
an error message if the action fails and returns a non-zero value. SCons will not, however, actually stop the build if
the action fails. If you want the build to stop in response to afailurein an action called by Execut e, you must do so
by explicitly checking the return value and calling the Exi t function (or a Python equivalent):

if Execute(Mdir('/tnp/ny_tenp directory')):
# A problem occurred while making the tenp directory.
Exit (1)

Iy
=== SCONS 98



13 Controlling Removal of
Targets

There are two occasions when SCons will, by default, remove target files. The first is when SCons determines that
an target file needs to be rebuilt and removes the existing version of the target before executing The second is when
SCons is invoked with the - ¢ option to "clean" atree of its built targets. These behaviours can be suppressed with
the Pr eci ous and Nod ean functions, respectively.

13.1. Preventing target removal during build:
the Preci ous Function

By default, SCons removestargets before building them. Sometimes, however, thisis not what you want. For example,
you may want to update a library incrementally, not by having it deleted and then rebuilt from all of the constituent
object files. In such cases, you can use the Pr eci ous method to prevent SCons from removing the target before
itisbuilt:

env = Envi ronnment ( RANLI BCOVE' ')
lib env. Library('foo', ['fl.c', 'f2.¢', 'f3.¢c'])
env. Preci ous(!lib)

Although the output doesn't look any different, SCons does not, in fact, delete the target library before rebuilding it:

% scons -Q

cc -o fl.o-c fil.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0

SConswill, however, still delete files marked as Pr eci ous when the - ¢ option is used.

13.2. Preventing target removal during clean:
the NoCl ean Function

By default, SCons removes all built targets when invoked with the - ¢ option to clean a source tree of built targets.
Sometimes, however, thisis not what you want. For example, you may want to remove only intermediate generated



Removing additional files during clean: the Cl ean
Function

files (such asobject files), but leave thefinal targets (the libraries) untouched. In such cases, you can usethe NoCl ean
method to prevent SCons from removing atarget during a clean:

env = Envi ronnment ( RANLI BCOVE' ')
lib = env.Library('foo', ['fl.c', 'f2.¢c', '"f3.¢c'])
env. NoCl ean( | i b)

Notice that thel i bf 0o. a isnot listed as aremoved file:

% scons -Q

cc -ofl.o-cfl.c

cc -o f2.0-c f2.c

cc -o f3.0-c f3.c

ar rc libfoo.a f1.0 f2.0 f3.0

% scons -cC

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved f1.0

Renoved f 2.0

Renoved f 3.0

scons: done cl eani ng targets.

13.3. Removing additional files during clean:
the C ean Function

There may be additional files that you want removed when the - ¢ option is used, but which SCons doesn't know
about because they're not normal target files. For example, perhaps a command you invoke creates a log file as part
of building the target file you want. Y ou would like the log file cleaned, but you don't want to have to teach SCons
that the command "builds' two files.

You can use the Cl ean function to arrange for additional files to be removed when the - ¢ option is used. Notice,
however, that the Cl ean function takes two arguments, and the second argument is the name of the additional file
you want cleaned (f 0o. | og in this example):

t = Conmand('foo.out', 'foo.in', 'build -o $TARGET $SOURCE')
Clean(t, 'foo.log")

Thefirst argument isthetarget with which you want the cleaning of thisadditional file associated. Inthe above example,
we've used the return value from the Command function, which representsthe f 0o. out target. Now whenever the
f 00. out targetis cleaned by the - ¢ option, thef 0o. | og filewill be removed as well:

% scons -Q

build -o foo.out foo.in
% scons -Q -c

Renmpoved f oo. out

Renmoved f oo. | og

Iy
=== SCONS 100



14 Hierarchical Builds

The source code for large software projects rarely stays in a single directory, but is nearly always divided into a
hierarchy of directories. Organizing alarge software build using SCons involves creating a hierarchy of build scripts
which are connected together using the SConscr i pt function.

14.1. SConscri pt Files

Aswe've dready seen, the build script at the top of thetreeiscalled SConst r uct . Thetop-level SConst r uct file
canusetheSConscri pt functiontoincludeother subsidiary scriptsin the build. These subsidiary scriptscan, inturn,
use the SConscr i pt function to include still other scriptsin the build. By convention, these subsidiary scripts are
usually named SConscr i pt . For example, atop-level SConst r uct file might arrange for four subsidiary scripts
to be included in the build as follows:

SConscri pt (
[
"drivers/display/ SConscript',
"drivers/ nmouse/ SConscri pt',
' par ser/ SConscri pt',
‘utilities/SConscript',

In this case, the SConst r uct filelists all of the SConscri pt filesin the build explicitly. (Note, however, that
not every directory in the tree necessarily hasan SConscr i pt file) Alternatively, thedr i ver s subdirectory might
contain an intermediate SConscr i pt file, in which casethe SConscri pt cal inthetop-level SConst ruct file
would look like:

SConscri pt (['drivers/ SConscript', 'parser/SConscript', '"utilities/SConscript'])
And the subsidiary SConscr i pt fileinthedri ver s subdirectory would look like:

SConscri pt ([ ' di spl ay/ SConscri pt', 'nouse/ SConscript'])



Path Names Are Relative to the SConscr i pt Directory

Whether you list all of theSConscr i pt filesinthetop-level SConst r uct file, or placeasubsidiary SConscr i pt
filein intervening directories, or use some mix of the two schemes, is up to you and the needs of your software.

14.2. Path Names Are Relative to the
SConscri pt Directory

Subsidiary SConscr i pt filesmakeit easy to create abuild hierarchy because all of the file and directory namesin a
subsidiary SConscr i pt filesareinterpreted relativetothedirectory inwhichthat SConscr i pt filelives. Typicaly,
thisallowsthe SConscr i pt file containing the instructions to build atarget file to live in the same directory as the
source files from which the target will be built, making it easy to update how the software is built whenever files are
added or deleted (or other changes are made). It also tends to keep scripts more readabl e as they don't need to befilled
with complex paths.

For example, suppose we want to build two programs pr ogl and pr 0g2 in two separate directories with the same
names as the programs. One typical way to do this would be with atop-level SConst r uct filelikethis:

SConscri pt ([' progl/ SConscript', 'prog2/ SConscript'])
And subsidiary SConscr i pt filesthat look like this;

env = Environnent ()
env. Progran(' progl', ['main.c', 'fool.c', 'foo02.c'])

And this;

env = Environment ()
env. Program(' prog2', ['main.c', 'barl.c', 'bar2.c'])

Then, when we run SConsin the top-level directory, our build looks like:

% scons -Q

cc -o progl/fool.o -c progl/fool.c

cc -0 progl/foo2.0 -c progl/foo2.c

cc -0 progl/main.o -c progl/ main.c

cc -0 progl/progl progl/ main.o progl/fool.o progl/foo2.o0
cCc -0 prog2/barl.o -c prog2/barl.c

CC -0 prog2/bar2.0 -c prog2/ bar2.c

CC -0 prog2/main.o -c prog2/ main.c

CC -0 prog2/ prog2 prog2/ mai n.o prog2/barl.o prog2/bar2.0

Notice the following: First, you can have files with the same names in multiple directories, like mai n. ¢ in the above
example. Second, when building, SCons staysin thetop-level directory (wherethe SConst r uct filelives) andissues
commands that use the path names from the top-level directory to the target and source files within the hierarchy. This
works because SCons reads all the SConscript filesin one pass, interpreting each initslocal context, building up atree
of information, before starting to execute the needed builds in a second pass. Thisis quite different than some other
build tools which implement a heirarcical build by recursing.

Iy
=== SCONS 102



Top-Relative Path Names in Subsidiary SConscr i pt
Files

14.3. Top-Relative Path Names in Subsidiary
SConscri pt Files

If you need to use afile from another directory, it's sometimes more convenient to specify the path to afile in another
directory from the top-level SConst r uct directory, even when you're using that file in asubsidiary SConscr i pt

filein asubdirectory. Y ou can tell SConsto interpret a path name asrelative to thetop-level SConst r uct directory,
not the local directory of the SConscr i pt file, by prepending a# (hash mark) in front of the path name:

env = Environnent ()
env. Progran('prog', ['main.c', '#lib/fool.c', 'foo2.c'])

In this example, the | i b directory is directly underneath the top-level SConstruct directory. If the above
SConscri pt fileisin asubdirectory named sr ¢/ pr og, the output would look like:

% scons -Q

cc -0 lib/fool.o -c lib/fool.c

cc -0 src/prog/foo2.0 -c src/prog/foo2.c

CC -0 src/prog/main.o -c src/prog/ nmain.c

cc -0 src/prog/prog src/prog/main.o lib/fool.o src/prog/foo2.o0

(Noticethat thel i b/ f 001. o object fileisbuilt in the same directory asits source file. See Chapter 15, Separating
Source and Build Trees: Variant Directories, below, for information about how to build the object file in a different
subdirectory.)

A couple of notes on top-relative paths:

1. SCons doesn't care whether you add a slash after the #. Some people consider ' #/ 1 i b/ f 001. ¢' morereadable
than' #1 i b/ f ool. c¢', but they're functionally equivalent.

2. The top-relative syntax is only evaluated by SCons, the Python language itself does not understand about it. This
becomes immediately obvious if you like to use pri nt for debugging, or write a Python function that wants to
evaluate apath. Y ou can force SConsto evaluate atop-rel ative path and produce a string that can be used by Python
code by creating a Node object from it;

path = "#/incl ude"

print("path =", path)
print("force-interpreted path =", Entry(path))
Which shows:

% scons -Q

path = #/incl ude
force-interpreted path = include
scons: ~.' is up to date.

14.4. Absolute Path Names

Of course, you can always specify an absolute path name for afile--for example:

Iy
=== SCONS 103



Sharing Environments (and Other Variables) Between
SConscri pt Files

env = Environment ()
env. Program(' prog', ['main.c', '/usr/joe/lib/fool.c', 'foo2.c'])

Which, when executed, would yield:

% scons -Q

cc -0 src/prog/foo2.0 -c src/prog/foo2.c

cC -0 src/prog/main.o -c src/prog/ main.c

cc -0 /usr/joe/lib/fool.o -c /usr/joel/lib/fool.c

cc -0 src/prog/prog src/prog/main.o /usr/joel/lib/fool.o src/prog/foo2.0

(As was the case with top-relative path names, notice that the/ usr/j oe/ | i b/ f ool. o object fileis built in the
same directory asits source file. See Chapter 15, Separating Source and Build Trees: Variant Directories, below, for
information about how to build the object file in a different subdirectory.)

14.5. Sharing Environments (and Other
Variables) Between SConscri pt Files

Inthepreviousexample, each of thesubsidiary SConscr i pt filescreateditsown construction environment by calling
Envi ronnment separately. This obviously works fine, but if each program must be built with the same construction
variables, it's cumbersome and error-prone to initialize separate construction environments in the same way over and
over in each subsidiary SConscri pt file.

SCons supports the ability to export variables from an SConscri pt file so they can be imported by other
SConscri pt files, thus alowing you to share common initialized values throughout your build hierarchy.

14.5.1. Exporting Variables

There are two ways to export a variable from an SConscr i pt file. The first way isto call the Export function.
Export is pretty flexible - in the simplest form, you pass it a string that represents the name of the variable, and
Export storesthat withitsvaue:

env = Environnent ()
Export (' env')

Y ou may export more than one variable name at atime:

env = Environnent ()
debug = ARGUMENTS| ' debug' ]
Export (' env', 'debug')

Because a Python identifier cannot contain spaces, Export assumes a string containing spaces is is a shortcut for
multiple variable names to export and splitsit up for you:

env = Environment ()
debug = ARGUVMENTS| ' debug’ ]

Iy
=== SCONS 104



Importing Variables

Export (' env debug')

You can also pass Export adictionary of values. This form alows the opportunity to export a variable from the
current scope under a different name - in this example, the value of f 00 is exported under the name " bar " :

env Envi r onnment ()

foo " FOO'

args = {"env": env, "bar": foo}
Export (args)

Export will also accept argumentsin keyword style. Thisform adds the ability to create exported variables that have
not actually been set locally in the SConscript file. When used this way, the key is the intended variable name, not a
string representation as with the other forms:

Expor t ( MODE="DEBUG', TARGET="ar ni')

The styles can be mixed, though Python function calling syntax requires al non-keyword arguments to precede any
keyword argumentsin the call.

The Export function adds the variables to a global location from which other SConscr i pt files canimport. Calls
to Export are cumulative. When you call Export you are actually updating a Python dictionary, so it is fine to
export avariable you have already exported, but when doing so, the previous valueislost.

The other way to export isyou can specify alist of variables as a second argument to the SConscr i pt function cal:
SConscri pt (' src/ SConscript', 'env')
Or (preferably, for readability) using the expor t s keyword argument:

SConscri pt (' src/ SConscript', exports='env')

These calls export the specified variables to only the listed SConscri pt file(s). You may specify more than one
SConscri pt fileinalist:

SConscri pt (['srcl/ SConscript', 'src2/SConscript'], exports='env')

Thisisfunctionally equivalent to callingthe SConscr i pt function multipletimeswiththesameexpor t s argument,
one per SConscri pt file.

14.5.2. Importing Variables

Once a variable has been exported from a calling SConscr i pt file, it may be used in other SConscr i pt filesby
calingthel nport function:

Iy
=== SCONS 105



Returning Values From an SConscr i pt File

| mport (' env')
env. Program(' prog', ['prog.c'])

Thel nport call makesthe previoudy defined env variable available to the SConscri pt file. Assumingenv isa
construction environment, after import it can be used to build programs, libraries, etc. The use case of passing around
a construction environment is extremely common in larger scons builds.

Likethe Export function, thel mport function can be called with multiple variable names:

| mport (' env', 'debug')
env = env. Cl one( DEBUG=debug)
env. Progran(' prog', ['prog.c'])

In this example, we pull in the common construction environment env, and use the value of the debug variable to
make amodified copy by passing that to aCl one call.

Thel mport function will (like Expor t ) split a string containing white-space into separate variable names:

| mport (' env debug')
env = env. Cl one( DEBUG=debug)
env. Progran(' prog', ['prog.c'])

| mport prefersalocal definitionto aglobal one, sothat if thereisaglobal export of f 00, and the calling SConscript
has exported f 00 to this SConscript, the import will find the f oo exported to this SConscript.

Lastly, as aspecial case, you may import all of the variables that have been exported by supplying an asterisk to the
| mport function:;

| mport (' *")
env = env. C one( DEBUG=debug)

env. Progran(' prog', ['prog.c'])

If you're dealing with alot of SConscri pt files, this can be alot simpler than keeping arbitrary lists of imported
variables up to date in each file.

14.5.3. Returning Values From an SConscri pt File

Sometimes, you would like to be able to use information from a subsidiary SConscr i pt file in some way. For
exampl e, suppose that you want to create one library from object files built by several subsidiary SConscr i pt files.
Y ou can do this by using the Ret ur n function to return values from the subsidiary SConscr i pt filesto the calling
file. Like I mport and Export, Ret ur n takes a string representation of the variable name, not the variable name
itself.

If, for example, we have two subdirectoriesf 0o and bar that should each contribute an object fileto alibrary, what

wed like to be able to do is callect the object files from the subsidiary SConscr i pt calslikethis:

env = Environment ()
Export (' env')

Iy
=== SCONS 106



Returning Values From an SConscr i pt File

objs =[]

for subdir in ['foo', "bar']:
o0 = SConscript (" %/ SConscript' % subdir)
obj s. append( o)

env. Li brary(' prog', objs)

We can do this by using the Ret ur n functioninthef oo/ SConscri pt filelikethis:

| nport (' env')
obj = env. vject('foo.c')
Return(' obj ")

(The corresponding bar / SConscr i pt file should be pretty obvious.) Then when we run SCons, the object files
from the subsidiary subdirectories are all correctly archived in the desired library:

% scons -Q

cc -0 bar/bar.o -c bar/bar.c

cc -o foo/foo.0 -c foo/foo.c

ar rc libprog.a foo/foo.o0 bar/bar.o
ranlib |ibprog.a

Iy
=== SCONS 107



15 Separating Source and
Build Trees: Variant Directories

It is often useful to keep built files completely separate from the source files. Two main benefits are the ability to have
different configurations simultaneously without build conflicts, and being version-control friendly.

Consider if you have a project to build an embedded software system for a variety of different controller hardware.
The system is able to share alot of code, so it makes sense to use a common source tree, but certain build options
in the source code and header files differ. For a regular in-place build, the build outputs go in the same place as the
source code. If you build Controller A first, followed by Controller B, on the Controller B build everything that uses
different build options has to be rebuilt since those objects will be different (the build lines, including preprocessor
defines, are part of SCons's out-of-date calculation for this reason). If you go back and build for Controller A again,
things have to be rebuilt again for the same reason. However, if you can separate the locations of the output files, so
each controller has its own location for build outputs, this problem can be avoided.

Having a separated build tree also helps you keep your source tree clean - there isless chance of accidentally checking
in build products to version control that were not intended to be checked in. You can add a separated build directory
to your version control system's list of items not to track. Y ou can even remove the whole build tree with a single
command without risking removing any of the source code.

The key to making this separation work is the ability to do out-of-tree builds: building under a separate root than the
sources being built. You set up out of tree builds by establishing what SCons calls a variant directory, a place where
you can build a single variant of your software (of course you can define more than one of these if you need to).
Since SCons tracks targets by their path, it is able to distinguish build products like bui | d/ A/ net wor k. obj of
the Controller A build from bui | d/ B/ net wor k. obj of the Controller B build, thus avoiding conflicts.

SCons providestwo waysto establish variant directories, onethrough the SConscr i pt functionthat we have already
seen, and the second through a more flexible Var i ant Di r function.

The variant directory mechanism does support doing multiple builds in one invocation of SCons, but the remainder
of this chapter will focus on setting up asingle build. Y ou can combine these techniques with ones from the previous
chapter and elsewhere in this Guide to set up more complex scenarios.

Note

TheVari ant Di r function used to be called Bui | dDi r, aname which was changed because it turned out
to be confusing: the SCons functionality differs from a familiar model of a "build directory" implemented
by certain other build systems like GNU Autotools. You might still find references to the old name on the
Internet in postings about SCons, but it no longer works.



Specifying aVariant Directory Tree as Part of an
SConscri pt Cal

15.1. Specifying a Variant Directory Tree as
Part of an SConscri pt Call

The most straightforward way to establish a variant directory tree relies on the fact that the usual way to set up a
build hierarchy isto have an SConscri pt filein the source directory. If you passavari ant _di r argument to
the SConscri pt function cal:

SConscri pt (' src/ SConscript', variant _dir="build")

SCons will then build all of the filesin the bui | d directory:

%ls src

SConscript hello.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o

%ls src
SConscript hello.c
%I|s build

SConscript hello hello.c hello.o

No files were built in sr c: the object file bui | d/ hel | 0. 0 and the executable file bui | d/ hel | o were built in
thebui | d directory, as expected. But notice that even though our hel | 0. c fileactually livesin the sr ¢ directory,
SCons has compiled abui | d/ hel | o. c fileto create the object file, and that fileisnow seenin bui | d.

Y ou can ask SCons to show the dependency tree to illustrate a bit more:

% scons -Q --tree=prune
cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/hello.o
+-.
SConst r uct
bui | d
+- bui | d/ SConscri pt
+-buil d/hello
| +-build/hello.o
| +-buil d/ hello.c
+-buil d/ hello.c
+- [ bui I d/ hel | 0. 0]
+-src
+- src/ SConscri pt
+-src/hello.c

+
+
I
I
I
I
I
I

What's happened is that SCons has duplicated thehel | o. ¢ filefromthesr ¢ directory to the bui | d directory, and
built the program from there (it also duplicated SConscr i pt ). The next section explains why SCons does this.

The nice thing about the SConscr i pt approachisitisamost invisible to you: this build looks just like an ordinary
in-place build except for the extravar i ant _di r argument in the SConscr i pt call. SCons handles al the path
adjustments for the out of tree bui | d directory whileit processes that SConscript file.

Iy
=== SCONS 109



Why SCons Duplicates Source Filesin aVariant
Directory Tree

15.2. Why SCons Duplicates Source Files in a
Variant Directory Tree

When you set up avariant directory SCons conceptually behaves asif you requested abuild in that directory. Asnoted
in the previous chapter, all builds actually happen from the top level directory, but as an aid to understanding how
SCons operates, think of it as build in place in the variant directory, not build in source but send build artifacts to
the variant directory. It turns out in place builds are easier to get right than out of tree builds - so by default SCons
simulatesanin place build by making the variant directory ook just like the source directory. The most straightforward
way to do that is by making copies of the files needed for the build.

The most direct reason to duplicate source filesin variant directoriesis simply that some tools (mostly older versions)
are written to only build their output files in the same directory as the source files - such tools often don't have any
option to specify the output file, and the tool just uses a predefined output file name, or uses a derived variant of the
source file name, dropping the result in the same directory. In this case, the choices are either to build the output file
in the source directory and move it to the variant directory, or to duplicate the source filesin the variant directory.

Additionally, relative references between files can cause problems which are resolved by just duplicating the hierarchy
of sourcefilesinto the variant directory. Y ou can seethisat work in use of the C preprocessor #i ncl ude mechanism
with double quotes, not angle brackets:

#i ncl ude "file.h"

The de facto standard behavior for most C compilersin this caseisto first look in the same directory asthe sourcefile
that containsthe #i ncl ude line, then to look in the directories in the preprocessor search path. Add to this that the
SConsimplementation of support for code repositories (described below) meansnot all of thefileswill befound inthe
samedirectory hierarchy, and the simplest way to make surethat theright includefileisfound isto duplicate the source
filesinto the variant directory, which provides a correct build regardless of the original location(s) of the sourcefiles.

Although source-file duplication guarantees a correct build even in these edge cases, it can usually be safely disabled.
The next section describes how you can disable the duplication of source filesin the variant directory.

15.3. Telling SCons to Not Duplicate Source
Files in the Variant Directory Tree

In most cases and with most tool sets, SCons can use sources directly from the source directory without duplicating
them into the variant directory before building, and everything will work just fine. Y ou can disable the default SCons
duplication behavior by specifying dupl i cat e=Fal se when you call the SConscri pt function:

SConscri pt (' src/ SConscript', variant _dir="build', duplicate=False)

When this flag is specified, the results of abuild look more like the mental model people may have from other build
systems - that is, the output files end up in the variant directory while the source files do not.

%Ils src
SConscr i pt
hel |l o.c

Iy
=== SCONS 110



TheVari ant Di r Function

% scons -Q
cc -c src/hello.c -o build/hello.o
cc -0 build/hello build/hello.o

%I|s build
hel | o
hell 0.0

If disabling duplication causes any problems, just return to the more cautious approach by letting SCons go back to
duplicating files.

15.4. The Vari ant Di r Function

You can also use the Var i ant Di r function to establish that target files should be built in a separate directory tree
from the sourcefiles:

VariantDir('build , "src')
env = Environment ()
env. Progran(' build/ hello.c")

When using thisform, you have to tell SCons that sources and targets arein the variant directory, and those references
will trigger the remapping, necessary file copying, etc. for an already established variant directory. Here is the same
example in amore spelled out form to show this more clearly:

VariantDir('build , "src')
env = Environnent ()
env. Program(target =" buil d/ hell o', source=["'build/hello.c'])

When using the Var i ant Di r function directly, SCons still duplicates the source files in the variant directory by
default:

%Ils src

hell o.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o

%Ils build

hello hello.c hello.o

Y ou can specify the same dupl i cat e=Fal se argument that you can specify for an SConscri pt cal:

VariantDir('build, "'"src', duplicate=Fal se)
env = Environnent ()
env. Progran(' buil d/ hello.c")

In which case SCons will disable duplication of the sourcefiles:

%Ils src
hel |l o.c
&

'—‘-‘ SCONS 111



Using Var i ant Di r Withan SConscri pt File

% scons -Q

cc -0 build/hello.o -c src/hello.c
cc -0 build/hello build/ hello.o
%Ils build

hello hello.o

15.5. Using Var i ant Di r With an SConscr i pt
File

Evenwhen using the Var i ant Di r function, itismore natural to useit with asubsidiary SConscr i pt file, because
then you don't have to adjust your individual build instructions to use the variant directory path. For example, if the
src/ SConscri pt lookslikethis:

env = Environnent ()
env. Progran(' hello.c')

Then our SConst r uct file could look like:

VariantDir('build, "src')
SConscri pt (' bui | d/ SConscript')

Yielding the following output:

%Ils src

SConscript hello.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o
%Ils build

SConscript hello hello.c hello.o

This is completely equivaent to the use of SConscri pt with the vari ant _di r argument from earlier in this
chapter, but did require callng the SConscript using the already established variant directory path to trigger that
behavior. If you call SConscri pt (' src/ SConscri pt') youwould get anormal in-place buildinsrc.

15.6. Using A ob with VariantDi r

The @ ob file name pattern matching function works just as usual when using Var i ant Di r . For example, if the
src/ SConscri pt lookslikethis:

env = Environment ()
env. Program(' hello', @ob('*.c"))

Then with the same SConst r uct file asin the previous section, and source filesf 1. ¢ and f 2. ¢ in src, wewould
see the following output:

%Ils src

Iy
=== SCONS 112



Variant Build Examples

SConscript fl.c f2.c¢ f2.h

% scons -Q

cc -0 build/fl.o0 -c build/fl.c

cc -0 build/f2.0 -c build/f2.c

cCc -0 build/hello build/fl.0 build/f2.0

% I|s build

SConscript fl.c fl.o f2.¢c f2.h f2.0 hello

The G ob function returns Nodesinthe bui | d/ tree, asyou'd expect.

15.7. Variant Build Examples

Thevari ant _di r keyword argument of the SConscr i pt function provides everything we need to show how easy
it isto create variant builds using SCons. Suppose, for example, that we want to build a program for both Windows
and Linux platforms, but that we want to build it in directory on a network share with separate side-by-side build
directories for the Windows and Linux versions of the program. We have to do alittle bit of work to construct paths,
to make sure unwanted location dependencies don't creep in. The top-relative path reference can be useful here. To
avoid writing conditional code based on platform, we can build thevar i ant _di r path dynamically:

pl atform = ARGUVENTS. get (' OS', Platform))

i ncl ude = "#export/$PLATFORM i ncl ude"
[ib = "#export/$PLATFORM | i b"
bin = "#export/$PLATFORM bi n"

env = Environment (
PLATFORMEpI at f or m

Bl NDI R=bi n,
I NCDI R=i ncl ude,
LI BDI R=l i b,

CPPPATH=[ i ncl ude] ,
LI BPATH=[ | i b],
LI BS=' worl d',

)
Export (' env')

env. SConscri pt (' src/ SConscript', variant _dir="buil d/ $PLATFORM )

This SConstruct file, when run on a Linux system, yields:

% scons -Q OS=l i nux

Install file: "build/linux/world/ world.h" as "export/I|inux/include/world.h"

cc -0 build/linux/hello/hello.o -c -lexport/Ilinux/include build/linux/hello/hello.c
cc -0 build/linux/world/world.o -c -lexport/Ilinux/include build/linux/world/ world.c
ar rc build/linux/world/libworld.a build/linux/world/ world.o

ranlib build/linux/world/libworld.a

Install file: "build/linux/world/libworld. a" as "export/linux/lib/libworld.a"

cc -0 build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hellol/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

Iy
=== SCONS 113



Variant Build Examples

C.\>scons -Q OS=wi ndows

Install file: "build/ wi ndows/world/world.h" as "export/w ndows/i ncl ude/worl d. h"

cl /Fobuil d\wi ndows\ hel | o\ hel | 0. obj /c buil d\w ndows\ hel | o\ hel | 0. ¢ /nol ogo /1 export\w ndow
cl /Fobuil d\wi ndows\ wor | d\wor | d. obj /c buil d\w ndows\wor| d\worl d.c /nol ogo /1 export\w ndow
lib /nol ogo /QUT: bui | d\wi ndows\wor | d\worl d.lib buil d\w ndows\wor| d\wor| d. obj

Install file: "build/ wi ndows/world/world.lib" as "export/w ndows/l|ib/world.lib"

i nk /nol ogo /QUT: bui | d\wi ndows\ hel | o\ hel | 0. exe /LI BPATH: export\w ndows\lib world.lib buil
enbedMani f est ExeCheck(target, source, env)

Install file: "build/ wi ndows/ hell o/ hello.exe" as "export/w ndows/ bi n/ hell o. exe"

In order to build severa variants at once when using the var i ant _di r argument to SConscr i pt, you can call
the function repeatedely - this example does so in aloop. Note that the SConscr i pt trick of passing alist of script
files, or alist of source directories, does not work with vari ant _di r, SCons allows only a single SConscr i pt
tobegivenif vari ant _di r isused.

env = Environnment (OS=ARGUVMENTS. get (' OS'))
for os in ['newell', 'post']:
SConscri pt (' src/ SConscript', variant _dir="build/' + o0s)

Iy
=== SCONS 114



16 Building From Code
Repositories

Often, a software project will have one or more central repositories, directory treesthat contain source code, or derived
files, or both. Y ou can eliminate additional unnecessary rebuilds of files by having SCons use files from one or more
code repositories to build filesin your local build tree.

16.1. The Reposi t ory Method

It's often useful to allow multiple programmers working on aproject to build software from source files and/or derived
filesthat are stored in a centrally-accessible repository, adirectory copy of the source code tree. (Note that thisis not
the sort of repository maintained by a source code management system like BitK eeper, CV'S, or Subversion.) Y ou use
the Reposi t or y method to tell SCons to search one or more central code repositories (in order) for any source files
and derived files that are not present in the local build tree:

env = Environnent ()
env. Progran(' hello.c")
Repository('/usr/repositoryl', '/usr/repository2')

MultiplecallstotheReposi t or y method will simply add repositoriesto the global list that SCons maintains, withthe
exception that SCons will automatically eliminate the current directory and any non-existent directories from the list.

16.2. Finding source files in repositories

The above example specifies that SCons will first search for files under the / usr/ reposi t or y1 tree and next
under the/ usr/ r eposi t or y2 tree. SCons expects that any filesit searches for will be found in the same position
relativeto thetop-level directory. Inthe above example, if thehel | 0. ¢ fileisnot foundinthelocal build tree, SCons
will search first for a/ usr/ reposi t oryl/ hel | o. c fileand thenfor a/ usr/ r eposi t ory2/ hel | o. c file
touseinitsplace.

So giventhe SConst r uct fileabove, if thehel | 0. ¢ file existsin thelocal build directory, SConswill rebuild the
hel | o program as normal:

% scons -Q
cc -0 hello.o -c hello.c



Finding #i ncl ude filesin repositories

cc -o hello hello.o

If, however, there is no local hel | 0. c file, but one exists in / usr/ reposi t or yl, SCons will recompile the
hel | o program from the sourcefileit finds in the repository:

% scons -Q
cc -0 hello.o -c /usr/repositoryl/hello.c
cc -0 hello hello.o

And similarly, if thereisnolocal hel | o. c fileandno/ usr/reposi toryl/ hel | 0. c, but oneexistsin/ usr/
repository2:

% scons -Q
cc -0 hello.o -c /usr/repository2/hello.c
cc -0 hello hello.o

The d ob function understands about repositories, and will use the same matching algorithm as described for
explicitly-listed sources.

16.3. Finding #i ncl ude files in repositories

We've already seen that SConswill scan the contents of asourcefilefor #i ncl ude file namesand realize that targets
built from that source file also depend on the #i ncl ude file(s). For each directory in the $CPPPATH list, SCons
will actually search the corresponding directoriesin any repository trees and establish the correct dependencies on any
#i ncl ude filesthat it findsin repository directory.

Unless the C compiler also knows about these directories in the repository trees, though, it will be unable to find the
#i ncl ude files. If, for example, the hel | 0. ¢ file in our previous example includes the hel | 0. h in its current
directory, and the hel | 0. h only existsin the repository:

% scons -Q
cc -0 hello.o -c hello.c
hello.c:1: hello.h: No such file or directory

In order to inform the C compiler about the repositories, SCons will add appropriate - | flags to the compilation
commands for each directory inthe SCPPPATHIist. Soif we add the current directory to the construction environment
$CPPPATH like so:

env = Environment (CPPPATH = ['."])
env. Progran(' hello.c")
Repository('/usr/repositoryl')

Then re-executing SCons yields:
% scons -Q
cc -0 hello.o -c -1. -Il/usr/repositoryl hello.c

cc -o hello hello.o

The order of the - | options replicates, for the C preprocessor, the same repository-directory search path that SCons
uses for its own dependency analysis. If there are multiple repositories and multiple $CPPPATH directories, SCons

Iy
=== SCONS 116



Limitationson #i ncl ude filesin repositories

will add the repository directories to the beginning of each $CPPPATH directory, rapidly multiplying the number of
- | flags. If, for example, the $CPPPATH contains three directories (and shorter repository path names!):

env = Environment (CPPPATH = ['dirl", 'dir2', 'dir3'])
env. Progranm(' hello.c")
Repository('/r1', "/r2")

Then well end up with nine - | options on the command line, three (for each of the $SCPPPATH directories) times
three (for the local directory plus the two repositories):
% scons -Q

cc -0 hello.o -c -Idirl -1/r1/dirl -1/r2/dirl -Idir2 -1/r1/dir2 -1/r2/dir2 -1dir3 -1/r1/d
cc -o hello hello.o

16.3.1. Limitations on #i ncl ude files in repositories

SConsrelies on the C compiler's- | optionsto control the order in which the preprocessor will search the repository
directories for #i ncl ude files. This causes a problem, however, with how the C preprocessor handles #i ncl ude
lines with the file name included in double-quotes.

Aswe've seen, SCons will compilethe hel | 0. ¢ file from the repository if it doesn't exist in the local directory. If,
however, thehel | 0. c filein the repository containsa#i ncl ude line with the file name in double quotes:

#i ncl ude "hell o. h"

i nt
mai n(i nt argc, char *argv[])
{
printf (HELLO MESSAGE) ;
return (0);
}

Thenthe C preprocessor will alwaysuseahel | o. h filefromtherepository directory first, evenif thereisahel | 0. h
filein thelocal directory, despite the fact that the command line specifies- | asthe first option:

% scons -Q
cc -0 hello.o -c -1. -l/usr/repositoryl /usr/repositoryl/hello.c
cc -0 hello hello.o

This behavior of the C preprocessor--aways search for a#i ncl ude filein double-quotes first in the same directory
as the source file, and only then search the - | --can not, in general, be changed. In other words, it's a limitation that
must be lived with if you want to use code repositoriesin thisway. There are three ways you can possibly work around
this C preprocessor behavior:

1. Some modern versions of C compilers do have an option to disable or control this behavior. If so, add that option
to $CFLAGS (or $CXXFLAGS or both) in your construction environment(s). Make sure the option is used for all
construction environments that use C preprocessing!

2. Change all occurrences of #i ncl ude "file.h" to#i nclude <file.h>. Useof #i ncl ude with angle
brackets does not have the same behavior--the - | directories are searched first for #i ncl ude files--which gives
SCons direct control over the list of directories the C preprocessor will search.

Iy
=== SCONS 117



Finding the SConst r uct fileinrepositories

3. Requirethat everyone working with compilation from repositories check out and work on entire directories of files,
not individual files. (If you uselocal wrapper scriptsaround your source code control system's command, you could
add logic to enforce this restriction there.

16.4. Finding the SConst r uct file in
repositories

SCons will also search in repositories for the SConst r uct file and any specified SConscr i pt files. This poses
a problem, though: how can SCons search a repository tree for an SConst r uct fileif the SConst ruct fileitself
contains the information about the pathname of the repository? To solve this problem, SCons allows you to specify
repository directories on the command line using the - Y option:

% scons -Q -Y /usr/repositoryl -Y /usr/repository?2

When looking for source or derived files, SCons will first search the repositories specified on the command line, and
then search the repositories specified in the SConst r uct or SConscri pt files.

16.5. Finding derived files in repositories

If arepository contains not only source files, but also derived files (such as object files, libraries, or executables),
SCons will perform its norma MD5 signature calculation to decide if a derived file in a repository is up-to-date, or
the derived file must be rebuilt in the local build directory. For the SCons signature calculation to work correctly, a
repository tree must contain the . sconsi gn filesthat SCons uses to keep track of signature information.

Usually, this would be done by a build integrator who would run SCons in the repository to create all of its derived
filesand . sconsi gn files, or who would run SCons in a separate build directory and copy the resulting tree to the
desired repository:

% cd /usr/repositoryl

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

cc -o hello.o -c hello.c

cc -0 hello hello.o filel.o file2.0

(Notethat thisis safe even if the SConst r uct filelists/ usr/ reposi t oryl asarepository, because SCons will
remove the current build directory from its repository list for that invocation.)

Now, with the repository populated, we only need to create the one local source file we're interested in working with
at the moment, and use the - Y option to tell SCons to fetch any other filesit needs from the repository:

% cd $HOVE/ bui | d

%edit hello.c

% scons -Q -Y /usr/repositoryl

cc -c -0 hello.o hello.c

cc -0 hello hello.o /usr/repositoryl/filel.o /usr/repositoryl/file2.o

Noticethat SConsrealizesthat it does not need to rebuild local copiesfi | el. oandfi | e2. o files, but instead uses
the already-compiled files from the repository.

Iy
=== SCONS 118



Guaranteeing local copies of files

16.6. Guaranteeing local copies of files

If the repository tree contains the compl ete results of a build, and we try to build from the repository without any files
in our local tree, something moderately surprising happens:

% kdi r $HOVE/ bui | d2

% cd $HOVE/ bui | d2

% scons -Q -Y /usr/all/repository hello
scons: " hello' is up-to-date.

Why does SCons say that the hel | o program is up-to-date when there is no hel | o program in the loca build
directory?Becausetherepository (not thelocal directory) containsthe up-to-datehel | o program, and SConscorrectly
determines that nothing needs to be done to rebuild that up-to-date copy of thefile.

There are, however, many times when you want to ensure that a local copy of afile always exists. A packaging or
testing script, for example, may assume that certain generated files exist locally. To tell SConsto make a copy of any
up-to-date repository filein the local build directory, usethe Local function:

env = Environment ()
hell o = env. Progran(' hello.c")
Local (hel | 0)

If we then run the same command, SCons will make aloca copy of the program from the repository copy, and tell
you that it is doing so:

% scons -Y /usr/all/repository hello
Local copy of hello from/usr/all/repository/hello
scons: " hello' is up-to-date.

(Noticethat, because the act of making thelocal copy isnot considered a"build" of thehel | o file, SCons still reports
that it is up-to-date.)

Iy
=== SCONS 119



17 Extending SCons: Writing
Your Own Builders

Although SCons provides many useful methods for building common software products (programs, libraries,
documents, etc.), you frequently want to be able to build some other type of file not supported directly by SCons.
Fortunately, SCons makes it very easy to define your own Bui | der objects for any custom file types you want to
build. (In fact, the SConsinterfacesfor creating Bui | der objects are flexible enough and easy enough to use that all
of the the SCons built-in Bui | der objects are created using the mechanisms described in this section.)

17.1. Writing Builders That Execute External
Commands

Thesimplest Bui | der tocreateisonethat executesan external command. For example, if wewant to build an output
file by running the contents of the input file through a command named f oobui | d, creating that Bui | der might
look like:

bl d = Buil der(action='foobuild < $SOURCE > $TARGET')

All the above line does is create afree-standing Bui | der object. The next section will show how to actually use it.

17.2. Attaching a Builder to a Construction
Environment

A Bui | der object isn't useful until it's attached to a construction environment so that we can call it to arrange for
files to be built. This is done through the $BUI LDERS construction variable in an environment. The $BUl LDERS
variableisaPython dictionary that maps the names by which you want to call variousBui | der objectsto the objects
themselves. For example, if we want to call the Bui | der we just defined by the name Foo, our SConst r uct file
might look like:

bl d
env

Bui | der (acti on=' foobuild < $SOURCE > $TARGET')
Envi ronnent ( BU LDERS={"' Foo' : bl d})



Attaching a Builder to a Construction Environment

Withthe Bui | der attached to our construction environment with the name Foo, we can now actualy call it like so:
env. Foo('file.foo', 'file.input')

Then when we run SCons it looks like:

% scons -Q
foobuild < file.input > file.foo

Note, however, that the default $BUI LDERS variable in a construction environment comes with a default set of
Bui | der objectsalready defined: Pr ogr am Li br ar y, etc. And when we explicitly set the $BUI LDERS variable
when we create the construction environment, the default Bui | der sare no longer part of the environment:

bl d = Buil der (acti on='foobuild < $SOURCE > $TARCET')
env = Environment (BU LDERS={"' Foo' : bl d})

env. Foo('file.foo', 'file.input')

env. Progran(' hello.c")

% scons -Q
AttributeError: 'SConsEnvironnent' object has no attribute 'Prograni:
File "/home/ ny/ project/SConstruct”, line 7:
env. Progran(' hello.c")

To be able to use both our own defined Bui | der objects and the default Bui | der objectsin the same construction
environment, you can either add to the $BUI LDERS variable using the Append function:

env Envi ronnent ()

bl d Bui | der (acti on='foobuild < $SOURCE > $TARGET")
env. Append( BU LDERS={" Foo': bl d})

env. Foo('file.foo', 'file.input')

env. Progran(' hello.c")

Or you can explicitly set the appropriately-named key in the $BUI LDERS dictionary:

env = Environnent ()

bl d = Buil der(action='foobuild < $SOURCE > $TARGET')
env['BU LDERS ][' Foo'] = bld

env. Foo('file.foo', 'file.input')

env. Progran(' hello.c")

Either way, the same construction environment can then use both the newly-defined Foo Bui | der and the default
Pr ogr amBui | der:

% scons -Q

foobuild < file.input > file.foo
cc -o hello.o -c hello.c

cc -o hello hello.o

Iy
=== SCONS 121



Letting SCons Handle The File Suffixes

17.3. Letting SCons Handle The File Suffixes

By supplying additional information when you create aBui | der , you can let SCons add appropriate file suffixesto
the target and/or the sourcefile. For example, rather than having to specify explicitly that you want the Foo Bui | der
tobuildthefi | e. f oo target filefromthefi | e. i nput sourcefile, you cangivethe. f oo and. i nput suffixes
tothe Bui | der, making for more compact and readable callsto the Foo Bui | der :

bl d = Bui | der (
action='foobuild < $SOURCE > $TARGET',
suffix='.foo',
src_suffix=".input',
)
env = Environnment (BU LDERS={"' Foo' : bl d})
env. Foo('filel")
env. Foo('file2")

% scons -Q
foobuild < filel.input > filel.foo
foobuild < file2.input > file2.foo

You can aso supply apr ef i x keyword argument if it's appropriate to have SCons append a prefix to the beginning
of target file names.

17.4. Builders That Execute Python Functions

In SCons, you don't have to call an external command to build afile. Y ou can, instead, define a Python function that
aBui | der object can invoketo build your target file (or files). Such a builder function definition looks like:

def build function(target, source, env):
# Code to build "target" from "source"
return None

The arguments of a builder function are:

t ar get
A list of Node objectsrepresenting thetarget or targetsto be built by thisfunction. The file names of thesetarget(s)
may be extracted using the Python st r function.

source
A list of Node objects representing the sources to be used by this function to build the targets. The file names of
these source(s) may be extracted using the Python st r function.

env
The construction environment used for building the target(s). The function may use any of the environment's
construction variablesin any way to affect how it builds the targets.

Thefunction will be constructed as a SCons FunctionAction and must return a0 or None valueif thetarget(s) are built
successfully. Thefunction may raise an exception or return any non-zero valueto indicatethat the build isunsuccessful.
For more information on Actions see the Action Objects section of the man page.

Iy
=== SCONS 122



Builders That Create Actions Using a Generator

Once you've defined the Python function that will build your target file, defining aBui | der object foritisassimple
as specifying the name of the function, instead of an external command, asthe Bui | der 'sact i on argument:

def build function(target, source, env):
# Code to build "target" from "source"
return None

bl d = Buil der (
action=buil d _functi on,
suffix=".foo',
src_suffix=".input',
)
env = Environnent (BU LDERS={' Foo' : bl d})
env. Foo('file")

And notice that the output changes dlightly, reflecting the fact that a Python function, not an external command, is
now called to build the target file:

% scons -Q
build function(["file.foo"], ["file.input"])

17.5. Builders That Create Actions Using a
Generator

SCons Builder objects can create an action "on the fly" by using a function called a Generator. (Note: this is not
the same thing as a Python generator function described in PEP 255 [https://www.python.org/dev/peps/pep-0255/])
This provides a great deal of flexibility to construct just the right list of commands to build your target. A generator
looks like:

def generate_actions(source, target, env, for_signature):
return 'foobuild < % > %' % (target[0], source[0])

The arguments of a generator are:

source
A list of Node objects representing the sources to be built by the command or other action generated by this
function. The file names of these source(s) may be extracted using the Python st r function.

tar get
A list of Node objects representing the target or targets to be built by the command or other action generated by
this function. The file names of these target(s) may be extracted using the Python st r function.

env
The construction environment used for building the target(s). The generator may use any of the environment's
construction variables in any way to determine what command or other action to return.

for_signature
A flag that specifies whether the generator is being called to contribute to abuild signature, as opposed to actually
executing the command.

Iy
=== SCONS 123


https://www.python.org/dev/peps/pep-0255/
https://www.python.org/dev/peps/pep-0255/

Builders That Modify the Target or Source Lists Using an
Emitter

The generator must return a command string or other action that will be used to build the specified target(s) from the
specified source(s).

Once you've defined a generator, you create a Bui | der to useit by specifying the gener at or keyword argument
instead of act i on.

def generate_actions(source, target, env, for_signature):
return 'foobuild < % > %' % (source[0], target[O0])

bl d = Buil der (
gener at or =gener at e_act i ons,
suffix='.foo',
src_suffix=".input',
)
env = Environnment (BU LDERS={"' Foo' : bl d})
env. Foo('file")

% scons -Q
foobuild < file.input > file.foo

Note that it'sillegal to specify bothanact i on andagener at or foraBui | der .

17.6. Builders That Modify the Target or Source
Lists Using an Emitter

SCons supports the ability for a Builder to modify the lists of target(s) from the specified source(s). Y ou do this by
defining an emitter function that takes asits argumentsthe list of the targets passed to the builder, thelist of the sources
passed to the builder, and the construction environment. The emitter function should return the modified lists of targets
that should be built and sources from which the targets will be built.

For example, suppose you want to defineaBuilder that alwayscallsafoobuild program, and you want to automatically
add a new target file named new t ar get and a new source file named new_sour ce whenever it's caled. The
SConst r uct file might ook like this:

def nodify targets(target, source, env):
t arget . append(' new target')
sour ce. append(' new_sour ce')
return target, source

bl d = Buil der (
action='foobuild $TARGETS - $SOURCES',
suffix='.foo',
src_suffix=".input',
em tter=nodi fy targets,
)
env = Environnment (BU LDERS={"' Foo' : bl d})
env. Foo('file")

And would yield the following output:

Iy
=== SCONS 124



Modifying a Builder by adding an Emitter

% scons -Q
foobuild file.foo new target - file.input new source

One very flexible thing that you can do is use a construction variabl e to specify different emitter functionsfor different
construction environments. To do this, specify a string containing a construction variable expansion as the emitter
when you call the Bui | der function, and set that construction variable to the desired emitter function in different
construction environments:

bl d = Buil der(
action='./ny_conmand $SOURCES > $TARGET',
suffix=".foo',
src_suffix=".input',
emtter="$MWY_EM TTER ,

def nodifyl(target, source, env):
return target, source + ['nodifyl.in']

def nodify2(target, source, env):
return target, source + ['nodify2.in"]

envl = Environnment (BU LDERS={' Foo': bld}, My _EM TTER=nodi fyl)
env2 = Environnment (BU LDERS={' Foo': bld}, My_EM TTER=nodi f y2)
envl. Foo('filel")
env2. Foo('file2")

In thisexample, thernrodi f y1. i nand nodi f y2. i n files get added to the source lists of the different commands:

% scons -Q
./my_command filel.input nodifyl.in > filel.foo
./my_command file2.input nodify2.in > file2.foo

17.7. Modifying a Builder by adding an Emitter

Defining an emitter to work with a custom Builder is a powerful concept, but sometimes al you really want is to be
able to use an existing builder but change its concept of what targets are created. In this case, trying to recreate the
logic of an existing Builder to supply a specia emitter can be alot of work. Thetypical case for thisis when you want
to use a compiler flag that causes additional files to be generated. For example the GNU linker accepts an option -
Map which outputs alink map to the file specified by the option's argument. If this option isjust supplied to the build,
SConswill not consider the link map file atracked target, which has various undesirabl e efffects.

To help with this, SCons provides construction variables which correspond to a few standard builders:
$PROGEM TTER for Pr ogram $LI BEM TTER for Li brary; $SHLI BEM TTER for Shar edLi brary and
$LDMODULEEM TTER for Loadabl eModul e;. Adding an emitter to one of these will cause it to be invoked in
addition to any existing emitter for the corresponding builder.

This example adds map creation as a linker flag, and modifies the standard Pr ogr am emitter to know that map

generation is a side-effect:

env = Environment ()
map_fil ename = "${ TARGET. nanme}. map"

Iy
=== SCONS 125



Where To Put Y our Custom Builders and Tools

def map_em tter(target, source, env):
t ar get . append( map_fi | enane)
return target, source

env. Append( LI NKFLAGS="-W, - Map={},--cref".format (map_fil enane))
env. Append( PROGEM TTER=map_eni tter)
env. Progranm(' hello.c")

If you run this example, adding an option to tell SCons to dump some information about the dependencies it knows,
it shows the map file option in use, and that SCons indeed knows about the map file, it's not just a silent side effect
of the compiler:

% scons -Q --tree=prune
cc -o hello.o -c hello.c
cc -0 hello -W, - Map=hel | 0. map, --cref hello.o
+- .
+- SConst r uct
+-hell o

17.8. Where To Put Your Custom Builders and
Tools

Thesi t e_scons directories give you a place to put Python modules and packages that you can import into your
SConscri pt files (at the top level) add-on tools that can integrate into SCons (in asi t e_t ool s subdirectory),
andasite_scons/site_init. py filethat getsread beforeany SConst ruct or SConscri pt file, alowing
you to change SCons's default behavior.

Each system type (Windows, Mac, Linux, etc.) searches a canonical set of directoriesfor si t e_scons; seethe man
page for details. The top-level SConstruct'ssi t e_scons dir (that is, the one in the project) is always searched last,
and itsdir is placed first in the tool path so it overrides all others.

If you get atool from somewhere (the SConswiki or athird party, for instance) and you'd liketo useit in your project,
asi te_scons dir isthe simplest place to put it. Tools come in two flavors; either a Python function that operates
onan Envi r onnent or a Python module or package containing two functions, exi st s() andgenerate() .

A single-function Tool canjust beincludedinyour sit e_scons/site_i ni t. py filewhereit will be parsed and
made available for use. For instance, you could haveasi t e_scons/site_i nit. py filelikethis:

def TOOL_ADD HEADER(env):
"""A Tool to add a header from $HEADER to the source file"""
add_header = Bui |l der(
action=['echo "$HEADER' > $TARCGET', 'cat $SOURCE >> $TARGET' ]

)
env. Append( BU LDERS={' AddHeader': add_header})

Iy
=== SCONS 126



Where To Put Y our Custom Builders and Tools

env[' HEADER | ="' # set default val ue

and aSConst r uct likethis:

# Use TOOL_ADD HEADER from site _scons/site_init.py
env=Envi ronnment (t ool s=[ ' default', TOO.L_ADD HEADER], HEADER="=====")
env. AddHeader ("tgt', 'src')

The TOOL_ADD_ HEADER tool method will be called to add the AddHeader tool to the environment.

A more full-fledged tool with exi st s() and gener at e() methods can be installed either as amodule in the file
site_scons/site_tool s/tool name. py or as a package in the directory site_scons/site_t ool s/
t ool nane. In the case of using a package, the exi st s() and gener at e() are in the file site_scons/
site_tool s/toolname/ __init__.py.(Inaltheabovecaset ool nane isreplaced by the name of thetool.)
Sincesi te_scons/ site_tool s isautomatically added to the head of the tool search path, any tool found there
will be available to al environments. Furthermore, atool found there will override a built-in tool of the same name,
so if you need to change the behavior of abuilt-in tool, si t e_scons gives you the hook you need.

Many people have a collection of utility Python functions they'd like to include in their SConscr i pt files: just put
theminsite_scons/ny_utils. py or any valid Python module name of your choice. For instance you can do
something likethisinsi t e_scons/ nmy_utils. py toaddbuil d_i d and MakeWor kDi r functions:

from SCons. Script inmport * # for Execute and Mdir
def build_ id():

"""Return a build ID (stub version)
return "100"

def MakeWor kDi r (wor kdir):
"""Create the specified dir i mediately
Execut e( Mkdi r (wor kdir))

And then in your SConscr i pt or any sub-SConscri pt anywherein your build, you canimport my_ut i | s and
useit:

i mport nmy_utils
print("build_id=" + my_utils.build_id())
ny_utils. MakeWor kDir (' /t np/ wor k')

Y ou can put thiscollection initsown moduleinasi t e_scons and import it asin the example, or you can include it
insite_scons/site_init.py,whichisautomatically imported (unless you disable site directories). Note that
in order to refer to objects in the SCons namespace such as Envi r onment or Mkdi r or Execut e in any file other
than aSConst ruct or SConscri pt you aways need to do

from SCons. Scri pt inport *

Thisistrue of modulesinsit e_scons suchassite_scons/site_init. py aswell.

Iy
=== SCONS 127



Where To Put Y our Custom Builders and Tools

You can use any of the user- or machine-wide site directories such as ~/ . scons/ site_scons instead of . /
site_scons,orusethe--site-dir optiontopointtoyour owndirectory.site init.pyandsite tools
will be located under that directory. To avoid using asi t e_scons directory at al, evenif it exists, use the - - no-
site-dir option.

Iy
=== SCONS 128



18 Not Writing a Builder: the
Conmmand Builder

Creating aBui | der and attaching it to aconstruction environment allowsfor alot of flexibility when you want to re-
use actionsto build multiplefiles of the sametype. This can, however, be cumbersomeif you only need to execute one
specific command to build a single file (or group of files). For these situations, SCons supports a Conmand builder
that arranges for a specific action to be executed to build a specific file or files. Thislooks alot like the other builders
(like Pr ogr am Qnj ect , etc.), but takes as an additional argument the command to be executed to build thefile:

env = Environnent ()
env. Conmand(' foo.out', 'foo.in', "sed 's/x/y/' < $SOURCE > $TARCGET")

When executed, SCons runs the specified command, substituting $SOURCE and $TARGET as expected:

% scons -Q
sed 's/x/yl' < foo.in > foo.out

This is often more convenient than creating a Bui | der object and adding it to the $BUI LDERS variable of a
construction environment.

Note that the action you specify to the Command Bui | der can be any legal SCons Act i on, such as a Python
function:

env = Environnent ()
def build(target, source, env):
# Whatever it takes to build

return None

env. Command(' foo.out', 'foo.in', build)

Which executes as follows:

% scons -Q
build(["foo.out"], ["fo0.in"])

Note that $SOURCE and $TARGET are expanded in the source and target as well, so you can write;



env. Conmand(' ${ SOURCE. basenane}.out', 'foo.in', build)

which does the same thing as the previous example, but allows you to avoid repeating yourself.

It may be helpful to usetheact i on keyword to specify the action, is this makes things more clear to the reader:

env. Command(' ${ SOURCE. basenane}.out', 'foo.in', action=build)

The method described in Section 9.2, “ Controlling How SCons Prints Build Commands: the $* COMSTRV ariables’ for
controlling build output works well when used with pre-defined builders which have pre-defined * COVSTR variables
for that purpose, but that is not the case when calling Conmmand, where SCons has no specific knowledge of the action
ahead of time. If the action argument to Conmrand isnot already an Act i on object, it will construct one for you with
suitable defaults, which include a message based on the type of action. However, you can also construct the Act i on
object yourself to pass to Cormand, which gives you much more control. Here's an evolution of the example from
above showing this approach:

env = Environnent ()
def build(target, source, env):

# Whatever it takes to build
return None

act = Action(build, cndstr="Building ${ TARGET}")
env. Command(' foo.out', 'foo.in', action=act)
Which executes as follows:

% scons -Q
Bui | di ng f 0o. out

Iy
=== SCONS 130



19 Extending SCons:

Pseudo-Builders and the
AddMethod function

The AddMet hod function is used to add a method to an environment. It's typically used to add a "pseudo-builder,"
a function that looks like a Bui | der but wraps up calls to multiple other Bui | der s or otherwise processes its
arguments before calling one or more Bui | der s. In the following example, we want to install the program into the
standard/ usr / bi n directory hierarchy, but also copy itintoalocal i nst al | / bi n directory from which a package
might be built:

def install _in_bin_dirs(env, source):
“"""|nstall source in both bin dirs"""
il = env.Install ("$BIN', source)
i2 = env.Install ("$LOCALBI N', source)
return [i1[0], i2[0]] # Return a list, like a nornal buil der
env = Environnent (BIN="/usr/bin', LOCALBIN='#install/bin")
env. AddMet hod(install _in_bin dirs, "lInstalllnBinDirs")
env.InstallInBinDirs(Progranm(' hello.c')) # installs hello in both bin dirs

This produces the following:

% scons -Q /

cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"
Install file: "hello" as "install/bin/hello"

Asmentioned, apseudo-builder also provides more flexibility in parsing argumentsthan you can get withaBui | der .
The next example shows a pseudo-builder with anamed argument that modifies the filename, and a separate argument
for the resource file (rather than having the builder figure it out by file extension). This example also demonstrates
using the global AddMet hod function to add a method to the global Environment class, so it will be used in all
subsequently created environments.

def Buil dTestProg(env, testfile, resourcefile, testdir="tests"):
"""Build the test program



prepends "test
and puts target into testdir.

to src and target,

srcfile = "test %.c" %testfile
target = "%/test_%" % (testdir, testfile)
if env[' PLATFORM ] == 'wi n32":

resfile = env. RES(resourcefile)
p = env.Progran(target, [srcfile, resfile])
el se:
p = env.Progran(target, srcfile)
return p
AddMet hod( Envi r onment, Bui | dTest Pr og)

env = Environment ()
env. Bui | dTest Prog(' stuff', resourcefile="res.rc')

This produces the following on Linux:

% scons -Q
cc -0 test _stuff.o -c test_stuff.c
cc -0 tests/test stuff test _stuff.o

And the following on Windows:

C.\>scons -Q

rc /nologo /fores.res res.rc

cl /Fotest stuff.obj /c test _stuff.c /nol ogo

link /nologo /QOUT:tests\test stuff.exe test stuff.obj res.res
enbedMani f est ExeCheck(target, source, env)

Using AddMet hod is better than just adding an instance method to a construction environment because it gets called
as a proper method, and because AddMet hod provides for copying the method to any clones of the construction
environment instance.

Iy
=== SCONS 132



20 Extending SCons: Writing
Your Own Scanners

SCons has built-in scanners that know how to look in C/C++, Fortran, D, IDL, LaTeX, Python and SWIG source files
for information about other files that targets built from those files depend on--for example, in the case of files that
use the C preprocessor, the . h files that are specified using #i ncl ude lines in the source. You can use the same
mechanisms that SCons usesto create its built-in scannersto write scanners of your own for file types that SCons does
not know how to scan "out of the box."

20.1. A Simple Scanner Example

Suppose, for example, that we want to create a simple scanner for . f 0o files. A . f 0o file contains some text that
will be processed, and can include other files on lines that begin with i ncl ude followed by afile name:

i ncl ude fil enane. f oo

Scanning afile will be handled by a Python function that you must supply. Hereis afunction that will use the Python
r e moduleto scan for thei ncl ude linesin our example:

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path, arg):
contents = node.get _text contents()
return env. File(include_re.findall (contents))

It isimportant to note that you have to return alist of File nodes from the scanner function, simple strings for the file
names won't do. Asin the examples we are showing here, you can usethe Fi | e function of your current construction
environment in order to create nodes on the fly from a sequence of file names with relative paths.

The scanner function must accept the four specified arguments and return alist of implicit dependencies. Presumably,
these would be dependencies found from examining the contents of the file, although the function can perform any
manipulation at all to generate the list of dependencies.



Adding a search path to ascanner: Fi ndPat hDir s

node
An SCons node object representing the file being scanned. The path name to the file can be used by converting
the nodeto astring using thest r () function, or an internal SConsget t ext _cont ent s() object method
can be used to fetch the contents.

env
The construction environment in effect for this scan. The scanner function may choose to use construction
variables from this environment to affect its behavior.

path
A list of directories that form the search path for included files for this scanner. This is how SCons handles the
$CPPPATHand $LI BPATH variables.

arg
An optional argument that you can choose to have passed to this scanner function by various scanner instances.

A Scanner object is created using the Scanner function, which typicaly takes an skeys argument to associate a

file suffix with this scanner. The Scanner object must then be associated with the $SCANNERS construction variable
in the current construction environment, typically by using the Append method:

kscan = Scanner (functi on=kfile_scan, skeys=['.k'])
env. Append( SCANNERS=kscan)

When we put it all together, it looks like:

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path):
contents = node.get text contents()
i ncludes = include_re.findall (contents)
return env. Fil e(incl udes)

kscan = Scanner (functi on=kfile_scan, skeys=['.k'])

env = Environment (ENV={' PATH : '/usr/local/bin'})
env. Append( SCANNERS=kscan)

env. Conmand(' foo', 'foo.k', 'kprocess < $SOURCES > $TARGET')

20.2. Adding a search path to a scanner:
Fi ndPat hDir s

If the build tool in question will use a path variable to search for included files or other dependencies, then the
Scanner will need to take that path variable into account as well - $CPPPATH and $L1 BPATH are used this way, for
example. The path to search is passed to your scanner as the pat h argument. Path variables may be lists of nodes,
semicolon-separated strings, or even contain construction variables which need to be expanded. SCons provides the
Fi ndPat hDi r s function which returns a callable to expand a given path (given as a SCons construction variable

Iy
=== SCONS 134



Using scanners with Builders

name) to alist of paths at the time the scanner is called. Deferring evaluation until that point allows, for instance, the
path to contain $TARCGET references which differ for each file scanned.

Using Fi ndPat hDi r s isquite easy. Continuing the above example, using KPATH as the construction variable with
the search path (analogous to $CPPPATH), we just modify the call to the Scanner factory function to include a
path keyword arg:

kscan = Scanner (functi on=kfile_scan, skeys=['.k'], path_function=Fi ndPat hDirs(' KPATH ))

Fi ndPat hDi r s returnsacallable object that, when called, will essentially expand the elementsinenv[ ' KPATH ]
and tell the scanner to search in those dirs. It will also properly add related repository and variant dirs to the search
list. As a side note, the returned method stores the path in an efficient way so lookups are fast even when variable
substitutions may be needed. Thisisimportant since many files get scanned in atypical build.

20.3. Using scanners with Builders

One approach for introducing scanners into the build is in conjunction with a Builder. There are two relvant optional
parameters we can use when creating abuilder: sour ce_scanner andt ar get _scanner.sour ce_scanner
isused for scanning sourcefiles, andt ar get _scanner isused for scanning the target once it is generated.

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path, arg):
contents = node.get _text contents()
return env. File(include_re.findall (contents))

kscan = Scanner (function=kfile_scan, skeys=['.k'], path_function=Fi ndPathDirs(' KPATH )

def build _function(target, source, env):
# Code to build "target" from "source"
return None

bl d = Buil der (
action=buil d functi on,
suffix=".foo',
sour ce_scanner =kscan,
src_suffix=".input',
)
env = Environnent (BU LDERS={"' Foo' : bl d})
env. Foo('file")

An emitter function can modify the list of sources or targets passed to the action function when the builder istriggered.

A scanner function will not affect the list of sources or targets seen by the builder during the build action. The scanner
function will however affect if the builder should rebuild (if any of the files sourced by the scanner have changed
for example).

Iy
=== SCONS 135



21 Multi-Platform

Configuration (Autoconf
Functionality)

SConshasintegrated support for build configuration similar in styleto GNU Autoconf, but designed to be transparently
multi-platform. The configuration system can help figure out if external build requirements such as system libraries
or header files are available on the build system. This section describes how to use this SCons feature. (See also the
SCons man page for additional information).

21.1. Configure Contexts

The basic framework for multi-platform build configuration in SCons is to create a configure context inside a
construction environment by calling the Conf i gur e function, perform the desired checks for libraries, functions,
header files, etc., and then call the configure context's Fi ni sh method to finish off the configuration:

env = Environnent ()

conf = Confi gure(env)

# Checks for libraries, header files, etc. go here!
env = conf. Fi ni sh()

The Fi ni sh call is required; if a new context is created while a context is active, even in a different construction
environment, scons will complain and exit.

SCons provides a number of pre-defined basic checks, as well as a mechanism for adding your own custom checks.

There are afew possible strategies for failing configure checks. Some checks may be for features without which you
cannot proceed. The simple approach hereisjust to exit SCons at that point - anumber of the examplesin this chapter
are coded that way. If there are multiple hard requirements, however, it may be friendlier to the user to set aflag in
case of any fails of hard requirements and accumulate a record of them, so that on the completion of the configure
context they can all be listed prior to failing the build - as it can be frustrating to have to iterate through the setup,
fixing one new requirement each iteration. Other checks may be for features which you can do without, and here the
strategy will usually beto set a construction variable which the rest of the build can examine for its absence/presence,
or to set particular compiler flags, library lists, etc. as appropriate for the circumstances, so you can proceed with the
build appropriately based on available features.



Checking for the Existence of Header Files

Note that SCons usesits own dependency mechanism to determine when a check needs to be run--that is, SCons does
not run the checks every time it is invoked, but caches the values returned by previous checks and uses the cached
values unless something has changed. This saves a tremendous amount of developer time while working on cross-
platform build issues.

The next sections describe the basic checks that SCons supports, as well as how to add your own custom checks.

21.2. Checking for the Existence of Header
Files

Testing the existence of a header file requires knowing what language the header fileis. Thisinformation is supplied
inthel anguage keyword parameter to the CheckHeader method. Since scons grew up in aworld of C/C++ code,
aconfigure context also has a Check CHeader method that specifically checks for the existence of a C header file:

env = Envi ronnent ()
conf = Confi gure(env)
i f not conf.CheckCHeader (' math.h'):
print('Math.h nust be installed!")
Exit (1)
i f conf.CheckCHeader (' foo.h'):
conf . env. Append( CPPDEFI NES=' HAS FOO H )
env = conf. Finish()

As shown in the example, depending on the circumstances you can choose to terminate the build if a given header file
doesn't exist, or you can modify the construction environment based on the presence or absence of a header file (the
same appliesto any other check). If there are amany elements to check for, it may be friendlier for the user if you do
not terminate on the first failure, but track the problems found until the end and report on all of them, that way the user
does not have to iterate multiple times, each time finding one new dependency that needs to be installed.

If you need to check for the existence a C++ header file, use the Check CXXHeader method:

env = Environnent ()

conf = Configure(env)

i f not conf.CheckCXXHeader (' vector.h'):
print('vector.h nmust be installed!")
Exit(1)

env = conf. Fini sh()

21.3. Checking for the Availability of a Function

Check for the availability of a specific function using the Check Func method:

env = Environment ()
conf = Configure(env)
i f not conf.CheckFunc('strcpy'):
print('Did not find strcpy(), using |ocal version')
conf . env. Append( CPPDEFI NES=(" strcpy', ' ny_l ocal _strcpy'))
env = conf. Fini sh()

Iy
=== SCONS 137



Checking for the Availability of aLibrary

21.4. Checking for the Availability of a Library

Check for the availability of a library using the CheckLi b method. You only specify the base part of the library
name, you don't needtoadd al i b prefixora. aor. | i b suffix:

env = Environnent ()

conf = Confi gure(env)

i f not conf.CheckLib('m):
print('Did not find libma or mlib, exiting!")
Exit(1)

env = conf. Fi ni sh()

Because the ability to use a library successfully often depends on having access to a header file that describes the
library'sinterface, you can check for alibrary and aheader file at the sametimeby usingthe CheckLi bW t hHeader
method:

env = Environnent ()

conf = Configure(env)

i f not conf.CheckLi bWthHeader('mi, 'math.h', |anguage='c'):
print("Did not find libma or mlib, exiting!')
Exit(1)

env = conf. Fini sh()

Thisis essentially shorthand for separate callsto the CheckHeader and CheckLi b functions.

21.5. Checking for the Availability of at ypedef

Check for the availability of at ypedef by usingthe CheckType method:

env = Environment ()

conf = Confi gure(env)

i f not conf.CheckType(' off t'):
print('Did not find off _t typedef, assuming int')
conf . env. Append( CPPDEFI NES=("'of f t',"int"'))

env = conf. Fi ni sh()

Y ou can also add a string that will be placed at the beginning of thetest filethat will be used to check for thet ypedef .
This provide away to specify files that must be included to find the t ypedef :

env = Environment ()

conf = Configure(env)

i f not conf.CheckType('off _t', '#include <sys/types.h>\n'):
print('Did not find off_t typedef, assuming int')
conf . env. Append( CPPDEFI NES=("'of f _t',"int"'))

env = conf. Fini sh()

Iy
=== SCONS 138



Checking the size of a datatype

21.6. Checking the size of a datatype

Check the size of a datatype by using the Check TypeSi ze method:

env = Environnent ()

conf = Confi gure(env)

int_size = conf.CheckTypeSi ze(' unsi gned int')
print('sizeof unsigned int is', int_size)

env = conf. Fi ni sh()

% scons -Q
si zeof unsigned int is 4
scons: ~.' is up to date.

21.7. Checking for the Presence of a program

Check for the presence of a program by using the Check Pr og method:

env = Environment ()

conf = Configure(env)

i f not conf.CheckProg('foobar'):
print('Unable to find the program foobar on the systeni)
Exit (1)

env = conf. Fini sh()

21.8. Extending SCons: Adding Your Own
Custom Checks

A custom check is a Python function that checks for a certain condition to exist on the running system, usually using
methods that SCons supplies to take care of the details of checking whether a compilation succeeds, alink succeeds,
aprogram isrunnable, etc. A simple custom check for the existence of a specific library might look as follows:

mylib test source file = """
#i ncl ude <nylib. h>
int main(int argc, char **argv)
{
MyLi brary nylib(argc, argv);
return O;

def CheckM/Li brary(context):

Iy
=== SCONS 139



Extending SCons. Adding Y our Own Custom Checks

cont ext . Message(' Checki ng for MLibrary...")

result = context. TryLink(nmylib test source file, '.c")
context.Result(result)

return result

TheMessage and Resul t methods should typically begin and end a custom check to let the user know what's going
on: the Message call prints the specified message (with no trailing newline) and the Resul t cal printsyes if the
check succeeds and no if it doesn't. The Tr yLi nk method actually tests for whether the specified program text will
successfully link.

(Note that acustom check can modify its check based on any argumentsyou chooseto passit, or by using or modifying
the configure context environment in the cont ext . env attribute.)

This custom check function is then attached to the configure context by passing a dictionary to the Conf i gur e call
that maps a name of the check to the underlying function:

env = Environment ()
conf = Configure(env, customtests={"'CheckMy/Library': CheckMLibrary})

You'll typicaly want to make the check and the function name the same, as we've done here, to avoid potential
confusion.

We can then put these pieces together and actualy call the CheckMyLi br ar y check asfollows:

nylib_test source file =
#i ncl ude <nylib. h>
int main(int argc, char **argv)

{
MyLi brary nylib(argc, argv);
return O;
}
def CheckMyLi brary(context):
cont ext . Message(' Checking for MyLibrary... ")
result = context. TryLink(mylib_test_source file, '.c")

cont ext. Resul t(result)
return result

env = Environnent ()
conf = Configure(env, customtests={"'CheckM/Library': CheckMLibrary})
i f not conf.CheckMyLi brary():
print('MLibrary is not installed!")
Exit (1)
env = conf. Fi ni sh()

# W woul d then add actual calls like Program() to build
# sonet hing using the "env" construction environnent.

If MyLibrary is not installed on the system, the output will ook like:

Iy
=== SCONS 140



Not Configuring When Cleaning Targets

% scons

scons: Readi ng SConscript file ...
Checking for MyLibrary... no

MyLi brary is not install ed!

If MyLibrary isinstalled, the output will look like:

% scons

scons: Readi ng SConscript file ...
Checking for MyLibrary... yes
scons: done readi ng SConscri pt
scons: Building targets ...

21.9. Not Configuring When Cleaning Targets

Using multi-platform configuration as described in the previous sections will run the configuration commands even
when invoking scons - ¢ to clean targets:

% scons -Q -c

Checking for MyLibrary... yes
Renoved f o00. 0

Renoved foo

Although running the platform checks when removing targets doesn't hurt anything, it's usually unnecessary. You
can avoid this by using the Get Opt i on method to check whether the - ¢ (clean) option has been invoked on the
command line:

env = Environnent ()
if not env.GetOption('clean'):
conf = Configure(env, customtests={"'CheckM/Library': CheckMLibrary})
i f not conf.CheckMyLi brary():
print('MyLibrary is not installed!")
Exit (1)
env = conf. Fi ni sh()

% scons -Q -c
Renpved f o0o0. 0
Renpved f oo

b4

SCONS 141



22 Caching Built Files

On multi-devel oper software projects, you can sometimes speed up every developer's builds alot by allowing them to
share a cache of the derived filesthat they build. After all, itisrelatively rare that any in-progress change affects more
than afew derived files, most will be unchanged. Using a cache can also help an individual developer: for exampleif
you wish to start work on a new feature in a clean tree, those build artifacts which could be reused can be retrieved
from the cache to populate the tree and save alot of initial build time. SCons makes this easy and reliable.

22.1. Specifying the Derived-File Cache
Directory

To enable caching of derived files, use the CacheDi r functioninany SConscri pt file
CacheDir (' /usr/local/build_cache')

The cache directory you specify must have read and write access for all developers who will be accessing the cached
files (if - - cache-readonl y is used, only read access is required). It should also be in some central location
that al builds will be able to access. In environments where developers are using separate systems (like individual
workstations) for builds, this directory would typically be on a shared or NFS-mounted file system. While SCons will
create the specified cache directory as needed, in this multi user scenario it is usually best to create it ahead of time
so the access rights can be set up correctly.

Here's what happens: When a build has a CacheDi r specified, every time afile is built, it is stored in that cache
directory indexed by its build signature. On subsequent builds, before an action is invoked to build afile, the build
signature is computed and SCons checks the derived-file cache directory to see if a file with the exact same build
signature already exists. 11f s0, the derived filewill not be built local ly, but will be copied into the local build directory
from the derived-file cache directory, like this:

% scons -Q

L A few insidedetails; SConstrackstwo main kinds of cryptographic hashes: acontent signature, which isahash of the contents of afile participating
in the build (depepdencies as well astargets); and a build signature, which is a hash of the elements needed to build atarget, such as the command
line, the contents of the sources, and possibly information about tools used in the build. The hash function produces a unique signature from its
inputs, no other set of inputs can produce that same signature. The build signature from building atarget is used as the filename of the target filein
the derived-file cache - that way lookups are efficient, just compute a build signature and seeif afile exists with that as the name.

The use of the build signature provides protection from concflicts: if two developers have different setups, so they would produce built objects
that are not identical, then because the difference in tools will show up in the build signature, which is used as the name of the cache entry, they
will end up being stored as separate entries.



K eeping Build Output Consistent

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q -c

Rermoved hel l 0. 0

Rermoved hel |l o

% scons -Q

Retrieved " hello.o' from cache
Retrieved "hello' from cache

Note that the CacheDi r feature requires that the build signature be calculated, even if you configure SCons to
use timestamps to decide if files are up to date (see the Chapter 6, Dependencies chapter for information about the
Deci der function), since the build signature is used to determine if a target file exists in the cache. Consequently,
using CacheDi r may reduce or negate any performance improvements from using timestamps for up-to-date
decisions.

22.2. Keeping Build Output Consistent

One potential drawback to using a derived-file cache is that the output printed by SCons can be inconsistent from
invocation to invocation, because any given file may be rebuilt one time and retrieved from the derived-file cache the
next time. This can make analyzing build output more difficult, especially for automated scripts that expect consistent
output each time.

If, however, you use the - - cache- show option, SCons will print the command line that it would have executed to
build the file, even when it is retrieving the file from the derived-file cache. This keeps the build output consistent
across builds:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q -c

Renpoved hell 0.0

Renpoved hel |l o

% scons -Q --cache-show
cc -0 hello.o -c hello.c
cc -0 hello hello.o

The trade-off, of course, is that you no longer know whether or not SCons has retrieved a derived file from cache or
has rebuilt it locally.

22.3. Not Using the Derived-File Cache for
Specific Files

Y ou may want to disable caching for certain specific filesin your configuration. For example, if you only want to put
executable filesin acentral cache, but not the intermediate object files, you can use the NoCac he function to specify
that the object files should not be cached:

env = Environment ()

obj = env.bject('hello.c")
env. Progran(' hello.c")
CacheDir (' cache')

NoCache(' hel |l 0. 0")

Iy
=== SCONS 143



Disabling the Derived-File Cache

Then when you run scons after cleaning the built targets, it will recompilethe object filelocally (sinceit doesn't existin
the derived-file cache directory), but still realize that the derived-file cache directory contains an up-to-date executable
program that can be retrieved instead of re-linking:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q -c

Renpoved hell 0.0

Renpoved hel |l o

% scons -Q

cc -0 hello.o -c hello.c
Retrieved "hello' from cache

22.4. Disabling the Derived-File Cache

Retrieving an already-built file from the derived-file cache is usually a significant time-savings over rebuilding the
file, but how much of asavings (or even whether it savestimeat all) can depend agreat deal on your system or network
configuration. For example, retrieving cached files from abusy server over abusy network might end up being slower
than rebuilding the fileslocally.

In these cases, you can specify the - - cache- di sabl e command-line option to tell SCons to not retrieve already-
built files from the derived-file cache directory:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q -c

Renpved hell 0.0

Renpved hell o

% scons -Q

Retrieved "hello.o' from cache
Retrieved " hello' from cache
% scons -Q -c

Renpved hell 0.0

Renpved hell o

% scons -Q --cache-di sabl e
cc -0 hello.o -c hello.c

cc -0 hello hello.o

22.5. Populating a Derived-File Cache With
Already-Built Files

Sometimes, you may have one or more derived files already built in your local build tree that you wish to make
available to other people doing builds. For example, you may find it more effective to perform integration builds with
the cache disabled (per the previous section) and only populate the derived-file cache directory with the built files after
the integration build has completed successfully. Thisway, the cache will only get filled up with derived filesthat are
part of acomplete, successful build not with filesthat might belater overwritten while you debug integration problems.

Iy
=== SCONS 144



Minimizing Cache Contention: the - - r andomOption

In this case, you can use thethe - - cache- f or ce option to tell SCons to put al derived filesin the cache, even if
the files already exist in your local tree from having been built by a previous invocation:

% scons -Q --cache-di sabl e
cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q -c

Renmoved hell 0.0

Renmpoved hell o

% scons -Q --cache-di sabl e
cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q --cache-force

scons: is up to date.
% scons -Q
scons: ~.' is up to date.

Notice how the above sample run demonstrates that the - - cache- di sabl e option avoids putting the built
hel | 0. o and hel | o filesin the cache, but after using the - - cache- f or ce option, the files have been put in the
cache for the next invocation to retrieve.

22.6. Minimizing Cache Contention: the - -
randomOption

If you allow multiple builds to update the derived-file cache directory simultaneously, two builds that occur at the
same time can sometimes start "racing" with one another to build the same files in the same order. If, for example,
you are linking multiple files into an executable program:

Program('prog', ['fl1.c', 'f2.c', 'f3.c', 'fd4.c', 'f5.¢c'])

SConswill normally build the input object files on which the program depends in their normal, sorted order:

% scons -Q

cc -o fl.o -c fil.c
cc -o f4.0 -c f4.c
cc -o f2.0 -c f2.c
cc -o f5.0 -c f5.¢c
cc -o f3.0 -c f3.c

cc -o prog fl.o0 f2.0 f3.0 f4.0 f5.0

But if two such builds take place simultaneously, they may each look in the cache at nearly the same time and both
decide that f 1. o must be rebuilt and pushed into the derived-file cache directory, then both decide that f 2. 0 must
be rebuilt (and pushed into the derived-file cache directory), then both decide that f 3. 0 must be rebuilt... Thiswon't
cause any actual build problems--both builds will succeed, generate correct output files, and populate the cache--but
it does represent wasted effort.

To dleviate such contention for the cache, you can use the - - r andomcommand-line option to tell SCons to build
dependenciesin arandom order:

% scons -Q --random
cc -o f3.0-c f3.c

Iy
=== SCONS 145



Using a Custom CacheDir Class

cc -o fl.o -c f1.
cc -o f5.0 -c f5.
cc -o f2.0 -c f2.
cc -o f4.0 -c f4.c

cc -o prog fl.o f2.0 f3.0 f4.0 f5.0

O 00

Multiple builds using the - - r andomoption will usually build their dependenciesin different, random orders, which
minimizes the chances for a lot of contention for same-named files in the derived-file cache directory. Multiple
simultaneous builds might still race to try to build the same target file on occasion, but long sequences of inefficient
contention should berare.

Note, of course, the - - r andomoption will cause the output that SCons prints to be inconsistent from invocation to
invocation, which may be an issue when trying to compare output from different build runs.

If you want to make sure dependencies will be built in a random order without having to specify the - - r andomon
very command line, you can use the Set Opt i on function to set ther andomoption within any SConscr i pt file

Set Opti on(' random , 1)
Program('prog', ['f1.c', 'f2.c', 'f3.c', 'fd4.¢c', 'f5.¢c'])

22.7. Using a Custom CacheDir Class

SCons' internal CacheDi r class can be extended to support customization around the details of caching behaviors,
for example using compressed cache files, encrypted cache files, gathering statistics and data, or many other aspects.

To create your own custom cache class, your custom class must be asubclass of the SCons. CacheDi r. CacheDi r
class. You can then pass your custom class to the CacheDir method or set the construction variable
$CACHEDI R_CLASS to the class before configuring the cache in that environment. SConswill internally invoke and
use your custom class when performing cache operations. The below example shows a simple use case of overriding
thecopy_f r om _cache method to record the total number of bytes pulled from the cache.

i mport SCons
i mport os

cl ass Cust omCacheDi r (SCons. CacheDir. CacheDir):
total retrieved = 0

@l assnet hod

def copy_from cache(cls, env, src, dst):
# record total bytes pulled from cache
cls.total _retrieved += os.stat(src).st_size
super ().copy_from cache(env, src, dst)

env = Environment ()
env. CacheDi r (' scons-cache', CustontacheDir)
# ...

Iy
=== SCONS 146



23 Alias Targets

We've already seen how you can usethe Al i as function to create atarget namedi nstal | :

env = Environment ()

hello = env. Program(' hello.c")
env.lnstall ('/usr/bin', hello)
env.Alias('install', '/usr/bin")

Y ou can then use this aias on the command line to tell SCons more naturally that you want to install files:

% scons -Q instal

cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"

Like other Bui | der methods, though, the Al i as method returns an object representing the alias being built. Y ou
can then use this object as input to anothother Bui | der . Thisis especially useful if you use such an object as input
to another call tothe Al i as Bui | der, allowing you to create a hierarchy of nested aliases:

env = Environment ()

p = env. Progran('foo.c')

| = env.Library('bar.c')
env.Install ('/usr/bin', p)

env.Install ('/usr/lib, 1)

ib =env.Alias('install-bin', '/usr/bin")

il =env.Alias('install-lib", '"/usr/lib")

env.Alias('install', [ib, il])

This example defines separatei nstal | ,instal |l -bin,andi nstal | -1i b aliases, allowing you finer control

over what getsinstalled:

% scons -Qinstall-bin

cc -o foo.o -c foo.c

cc -o foo foo.o

Install file: "foo" as "/usr/bin/foo"
% scons -Qinstall-lib



CcC -0 bar.o -c bar.c

ar rc libbar.a bar.o

ranlib |ibbar.a

Install file: "libbar.a" as "/usr/lib/libbar.a"
% scons -Q -c /

Rermoved foo. 0

Rermoved f oo

Rermoved /usr/ bin/foo

Renmoved bar. o

Rermoved |i bbar. a

Rermoved /usr/lib/libbar.a

% scons -Q instal

cc -o foo.o -c foo.c

cc -o foo foo.o

Install file: "foo" as "/usr/bin/foo"

CcC -0 bar.o -c bar.c

ar rc libbar.a bar.o

ranlib |ibbar.a

Install file: "libbar.a" as "/usr/lib/libbar.a"

Iy
=== SCONS 148



24 Java Builds

So far, we've been using examples of building C and C++ programs to demonstrate the features of SCons. SCons aso
supports building Java programs, but Java builds are handled slightly differently, which reflects the waysin which the
Java compiler and tools build programs differently than other languages tool chains.

24.1. Building Java Class Files: the Java
Builder

The basic activity when programming in Java, of course, is to take one or more . j ava files containing Java source
code and to call the Java compiler to turn them into one or more . cl ass files. In SCons, you do this by giving the
Java Builder atarget directory inwhichtoput the. cl ass files, and asourcedirectory that containsthe. j ava files:

Java(' cl asses', 'src')

If the sr ¢ directory containsthree . j ava sourcefiles, then running SCons might look like this:

% scons -Q
javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/Exanpl e3.java

SCons will actually search the sr ¢ directory tree for all of the . j ava files. The Java compiler will then create the
necessary classfilesinthecl asses subdirectory, based on the class names found inthe . j ava files.

24.2. How SCons Handles Java Dependencies

In addition to searching the source directory for . j ava files, SConsactually runsthe. j ava filesthrough a stripped-
down Java parser that figures out what classes are defined. In other words, SCons knows, without you having to tell
it, what . cl ass fileswill be produced by the javac call. So our one-liner example from the preceding section:

Java(' cl asses', 'src')
Will not only tell you reliably that the. cl ass filesinthecl asses subdirectory are up-to-date:

% scons -Q
javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/ Exanpl e3.j ava



Building Java Archive (. j ar) Files: the Jar Builder

% scons -Q cl asses
scons: "classes' is up to date.

But it will also remove al of the generated . cl ass files, even for inner classes, without you having to specify them
manually. For example, if our Exanpl el. j ava and Exanpl e3. j ava files both define additional classes, and
the class defined in Exanpl e2. j ava has an inner class, running scons - ¢ will clean up al of those . cl ass
filesaswell:

% scons -Q

javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/Exanp
% scons -Q -c cl asses

Renoved cl asses/ Exanpl el. cl ass

Renmoved cl asses/ Addi ti onal C assl. cl ass

Renmoved cl asses/ Exanpl e2$l nner 2. cl ass

Renoved cl asses/ Exanpl e2. cl ass

Renoved cl asses/ Exanpl e3. cl ass

Renoved cl asses/ Addi ti onal Cl ass3. cl ass

To ensure correct handling of . ¢l ass dependenciesin al cases, you need to tell SCons which Javaversion isbeing
used. This is needed because Java 1.5 changed the . cl ass file names for nested anonymous inner classes. Use the
JAVAVERSI ON construction variable to specify the version in use. With Java 1.6, the one-liner example can then
be defined like this:

Java(' classes', 'src', JAVAVERSI ON='1.6")

See JAVAVERSI ON in the man page for more information.

24.3. Building Java Archive (. ] ar) Files: the
Jar Builder

After building the classfiles, it's common to collect them into a Javaarchive (. j ar) file, which you do by calling the
Jar Builder. If youwant tojust collect al of the classfileswithin asubdirectory, you can just specify that subdirectory
astheJar source:

Java(target='classes', source='src')
Jar(target="test.jar', source='classes')

SCons will then pass that directory to the jar command, which will collect all of the underlying . cl ass files:

% scons -Q

| e3.java

javac -d classes -sourcepath src src/Exanpl el.java src/Exanpl e2.java src/ Exanpl e3.j ava

jar cf test.jar classes

If you want to keep al of the. cl ass files for multiple programs in one location, and only archive some of them in
each. | ar file, you can passtheJar builder alist of filesasits source. It's extremely simpleto create multiple. j ar
filesthisway, using thelists of target classfilescreated by callstothe Java builder assourcestothevariousJar calls:

progl class files
prog2_cl ass files

Java(target="classes', source=' progl')
Java(target='classes', source=' prog2')

Iy
=== SCONS 150



Building C Header and Stub Files: the JavaH Builder

Jar(target="progl.jar', source=progl class files)
Jar(target='prog2.jar', source=prog2 class _files)

Thiswill then create pr ogl. j ar and pr og2. j ar next to the subdirectories that contain their . j ava files:

% scons -Q

javac -d cl asses -sourcepath progl progl/ Exanpl el.java progl/ Exanpl e2.j ava
javac -d cl asses -sourcepath prog2 prog2/ Exanpl e3.java prog2/ Exanpl e4. j ava
jar cf progl.jar -C classes Exanpl el.class -C cl asses Exanpl e2. cl ass

jar cf prog2.jar -C classes Exanpl e3.cl ass -C cl asses Exanpl e4. cl ass

24.4. Building C Header and Stub Files: the
JavaHBuilder

Y ou can generate C header and source files for implementing native methods, by using the JavaH Builder. There are
several ways of using the JavaH Builder. One typical invocation might look like:

cl asses = Java(target='cl asses', source="src/pkg/sub')
JavaH(target ="' native', source=cl asses)

The source is alist of class files generated by the call to the Java Builder, and the target is the output directory in
which we want the C header files placed. The target gets converted into the - d when SCons runs javah:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el. java src/ pkg/ sub/ Exanpl e2. ] a
javah -d native -classpath cl asses pkg.sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanmpl e3

In this case, the call to javah will generate the header files nati ve/ pkg_sub_Exanpl el. h, nati ve/
pkg _sub_Exanpl e2. h and nat i ve/ pkg_sub_Exanpl e3. h. Notice that SCons remembered that the class
files were generated with a target directory of cl asses, and that it then specified that target directory as the -
cl asspat h option to the call to javah.

Although it's more convenient to use the list of class files returned by the Java Builder as the source of a call to
the JavaH Builder, you can specify the list of class files by hand, if you prefer. If you do, you need to set the
$JAVACLASSDI R construction variable when calling JavaH:

Java(target='cl asses', source='src/pkg/sub')
class file list = |

' cl asses/ pkg/ sub/ Exanpl el. cl ass',

' cl asses/ pkg/ sub/ Exanpl e2. cl ass',

' cl asses/ pkg/ sub/ Exanpl e3. cl ass',

]
JavaH(target='"native', source=class file |ist, JAVACLASSDI R='cl asses')

The $JAVACLASSDI R value then gets converted into the - ¢l asspat h when SCons runs javah:

% scons -Q
javac -d cl asses -sourcepath src/pkg/sub src/pkg/sub/Exanpl el.java src/pkg/sub/ Exanpl e2.j a
javah -d native -classpath cl asses pkg.sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanmpl e3

Iy
=== SCONS 151



Building RMI Stub and Skeleton Class Files: the RM C
Builder

Lastly, if you don't want a separate header file generated for each source file, you can specify an explicit File Node
asthe target of the JavaH Builder:

cl asses = Java(target='cl asses', source="src/pkg/sub')
JavaH(target=Fil e(' native.h'), source=cl asses)

Because SCons assumes by default that the target of the JavaH builder is a directory, you need to usethe Fi | e
function to make sure that SCons doesn't create a directory named nat i ve. h. When afile is used, though, SCons
correctly converts the file name into the javah - o option:

% scons -Q
javac -d cl asses -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el.java src/pkg/sub/ Exanpl e2.j a
javah -o native.h -cl asspath cl asses pkg. sub. Exanpl el pkg. sub. Exanpl e2 pkg. sub. Exanpl e3

Note that the the javah command was removed from the JDK as of JDK 10, and the approved method (available since
JDK 8) isto use javac to generate native headers at the same time as the Java source code is compiled.. As such the
JavaH builder isof limited utility in later Java versions.

24.5. Building RMI Stub and Skeleton Class
Files: the RM CBuilder

You can generate Remote Method Invocation stubs by using the RM C Builder. The source is alist of directories,
typically returned by a call to the Java Builder, and the target is an output directory wherethe _St ub. cl ass and
_Skel . cl ass fileswill be placed:

cl asses = Java(target='cl asses', source=' src/pkg/sub')
RM C(target="outdir', source=classes)

As it did with the JavaH Builder, SCons remembers the class directory and passes it as the - cl asspat h option
tormic:

% scons -Q
javac -d classes -sourcepath src/pkg/sub src/pkg/sub/ Exanpl el.java src/ pkg/ sub/ Exanpl e2.j a
rmc -d outdir -classpath classes pkg. sub. Exanpl el pkg. sub. Exanpl e2

This example would generate the files out di r/ pkg/ sub/ Exanpl el_Skel . cl ass, outdir/ pkg/
sub/ Exanpl el_St ub. cl ass, outdir/ pkg/ sub/ Exanpl e2_Skel . cl ass and out di r/ pkg/ sub/
Exanpl e2_St ub. cl ass.

Iy
=== SCONS 152



25 Internationalization and
localization with gettext

The get t ext toolset supports internationalization and localization of SCons-based projects. Builders provided
by get t ext automatize generation and updates of trandlation files. You can manage translations and translation
templates similarly to how it's done with autotools.

25.1. Prerequisites

To follow examples provided in this chapter set up your operating system to support two or more languages. In
following examples we use localesen_US, de_DE, and pl _PL.

Ensure, that you have GNU gettext utilities [http://www.gnu.org/software/gettext/manual/gettext.html] installed on
your system.

To edit trandation files you may wish to install poedit [http://www.poedit.net/] editor.

25.2. Simple project

Let's start with avery simple project, the "Hello world" program for example

/* hello.c */
#i ncl ude <stdi o. h>
int main(int argc, char* argv[])
{
printf("Hello world\n");
return O;

}

Prepare a SConst r uct to compile the program as usua.

# SConst ruct
env = Environnent ()
hello = Program(["hello.c"])


http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.poedit.net/
http://www.poedit.net/

Simple project

Now well convert the project to a multi-lingual one. If you don't already have GNU gettext utilities [http://
www.gnu.org/software/gettext/manual /gettext.ntml] installed, install them from your preffered package repository, or
download from http://ftp.gnu.org/gnu/gettext/ [http://ftp.gnu.org/gnu/gettext/]. For the purpose of this example, you
should have following three locales installed on your system: en_US, de_DE and pl _PL. On debian, for example,
you may enable certain local es through dpkg-reconfigure locales.

First preparethe hel | 0. ¢ program for internationalization. Change the previous code so it reads as follows:

/* hello.c */

#i ncl ude <stdi o. h>

#i ncl ude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext dormai n("hel | 0", "I ocal e");
setl| ocal e(LC ALL, "");
t ext domai n("hel | 0");
printf(gettext("Hello world\n"));
return O;

Detailed recipes for such conversion can be found at http://www.gnu.org/software/gettext/manual /
gettext.html#Sources [http://www.gnu.org/software/gettext/manual/gettext.html#Sources]. Thegettext ("...")
has two purposes. First, it marks messages for the xgettext(1) program, which we will use to extract from the sources
the messages for localization. Second, it callstheget t ext library internalsto trandlate the message at runtime.

Now we shall instruct SCons how to generate and maintain trand ation files. For that, usethe Tr ans| at e builder and
MOFi | es builder. The first one takes source files, extracts internationalized messages from them, creates so-called
POT file (trandation template), and then creates PO trandation files, one for each requested language. Later, during
the development lifecycle, the builder keeps all these files up-to date. The MOFi | es builder compiles the POfilesto
binary form. Then install the MOfiles under directory called | ocal e.

The completed SConst r uct isasfollows:

# SConst ruct
env = Environnment( tools = ['default', 'gettext'] )
hell o = env. Progran(["hello.c"])
env[' XCETTEXTFLAGS'] = [
' - - package- nanme=%"' % ' hell o',
' - - package-version=%"' %'1.0',
]
po = env. Translate(["pl","en", "de"], ["hello.c"], POAUTONT = 1)
no = env. MOFi | es( po)
Instal |l As(["] ocal e/ en/ LC_ MESSAGES/ hel | 0. m0"], ["en.nm"])
Instal |l As(["] ocal e/ pl / LC_ MESSAGES/ hel | 0. m0"], ["pl.nm"])
Instal |l As(["] ocal e/ de/ LC_MESSAGES/ hel | 0. m0"], ["de.nmp"])

Generate the trandlation files with scons po-update. Y ou should see the output from SCons simillar to this:

user @ost: $ scons po-update

Iy
=== SCONS 154


http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html
http://ftp.gnu.org/gnu/gettext/
http://ftp.gnu.org/gnu/gettext/
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
http://www.gnu.org/software/gettext/manual/gettext.html#Sources
http://www.gnu.org/software/gettext/manual/gettext.html#Sources

Simple project

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

Entering '/ honme/ptomnulik/projects/tnp'
xget t ext

Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'

Witting 'messages.pot’ (new file)

meginit --no-translator -1 pl -i nessages.pot -o pl.po
Created pl. po.

msginit --no-translator -1 en -i nessages.pot -0 en.po
Creat ed en. po.

msginit --no-translator -1 de -i nessages.pot -o de.po

Creat ed de. po.
scons: done buil ding targets.

If everything isright, you should see following new files.

user@uost:$ |'s *. po*

de.po en.po nessages.pot pl.po

- - package- nane=hel | o --package-version=1.0 -0 -

hel |l o.c

Openen. po inpoedit and providethe English trandation to message" Hel | o wor | d\ n". Dothesamefor de. po

(deutsch) and pl . po (polish). Let the translations be, for example:

e en: "Welcone to beautiful world!'\n"
e de: "Hallo Welt!\n"
e pl: "Wtaj swieciel\n"

Now compile the project by executing scons. The output should be similar to this:

user @ost: $ scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

msgfm -c -o de.np de. po

nsgfnt -c -0 en.no en. po

gcc -0 hello.o -c hello.c

gcc -0 hello hello.o

Install file: "de.m" as "l ocal e/ de/ LC_MESSAGES/ hel | 0. np"
Install file: "en.m" as "l ocal e/ en/ LC_MESSAGES/ hel | 0. nD"
nsgfnt -c -o pl.no pl.po

Install file: "pl.m" as "l ocal e/ pl/LC MESSAGES/ hel | 0. no"
scons: done buil ding targets.

SCons automatically compiled the POfilesto binary format MO, and thel nst al | As linesinstalled these files under

| ocal e folder.

Y our program should be now ready. Y ou may try it as follows (linux):

Iy
=== SCONS

155



Simple project

user @ost : $ LANG=en_US. UTF-8 ./hello
VWl cone to beautiful world

user @ost:$ LANG=de DE. UTF-8 ./hell o
Hal | o Welt

user @ost:$ LANG=pl PL.UTF-8 ./hello
Wtaj swiecie

To demonstrate the further life of trandation files, let's change Polish trandation (poedit pl.po) to" Wt aj dr ogi
swi eci e\ n". Run sconsto see how scons reacts to this

user @ost : $scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

msgfm -c -o pl.nm pl.po

Install file: "pl.m" as "l ocal e/ pl /LC MESSACES/ hel | 0. no"
scons: done buil ding targets.

Now, open hel | 0. ¢ and add another one pri nt f line with new message.

/* hello.c */

#i ncl ude <stdio. h>

#i nclude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext dormai n("hel | 0", "I ocal e");
setl ocal e(LC ALL, "");
t ext domai n( " hel | 0");
printf(gettext("Hello world\n"));
printf(gettext("and good bye\n"));
return O;

Compile project with scons. This time, the msgmer ge(1) program is used by SCons to update PO file. The output
from compilation islike:

user @ost : $scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

Entering '/ hone/ptomnulik/projects/tnp'

xgettext --package-nanme=hello --package-version=1.0 -0 - hello.c

Iy
=== SCONS 156



Simple project

Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'
Witting 'nmessages.pot’' (nmessages in file were outdated)
nmsgner ge --update de.po nessages. pot
done.
msgfm -c -o de.np de. po
negner ge --update en. po nessages. pot
done.
msgfm -c -0 en.nb en. po
gcc -0 hello.o -c hello.c
gcc -0 hello hello.o
Install file: "de.m" as "l ocal e/ de/ LC_MESSAGES/ hel | 0. nD"
Install file: "en.m" as "l ocal e/ en/ LC_MESSAGES/ hel | 0. nD"
nmsgner ge --update pl.po nessages. pot
done.
msgfm -c -o pl.nm pl.po
Install file: "pl.m" as "l ocal e/ pl /LC_MESSACES/ hel | 0. no"
scons: done buil ding targets.

The next example demonstrates what happens if we change the source code in such way that the internationalized
messages do not change. The answer is that none of trandation files (POT, PO) are touched (i.e. no content changes,
no creation/modification time changed and so on). Let's append another line to the program (after the last printf), so
its code becomes:

/* hello.c */

#i ncl ude <stdio. h>

#i nclude <libintl.h>

#i ncl ude <l ocal e. h>

int main(int argc, char* argv[])

{
bi ndt ext domai n("hel |l 0", "l ocal e");
set| ocal e(LC ALL, "");
t ext domai n( " hel | 0");
printf(gettext("Hello world\n"));
printf(gettext("and good bye\n"));
printf("---------------- \n");
return a;

Compile the project. You'll see on your screen

user @ost : $scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

Entering '/ hone/ptomnulik/projects/tnp'

xgettext --package-nanme=hello --package-version=1.0 -0 - hello.c
Leavi ng '/ hone/ pt onul i k/ proj ect s/t np'

Not witting 'messages. pot' (nmessages in file found to be up-to-date)
gcc -0 hello.o -c hello.c

gcc -o hello hello.o

scons: done buil ding targets.

Iy
=== SCONS 157



Simple project

As you see, the internationalized messages ditn't change, so the POT and the rest of trandation files have not even
been touched.

Iy
=== SCONS 158



26 Miscellaneous

Functionality

SCons supports alot of additional functionality that doesn't readily fit into the other chapters.

26.1. Verifying the Python Version: the
Ensur ePyt honVer si on Function

Although the SCons code itself will run on any 2.x Python version 2.7 or later, you are perfectly free to make use of
Python syntax and modules from later versions when writing your SConscr i pt files or your own local modules.
If you do this, it's usually helpful to configure SCons to exit gracefully with an error message if it's being run with a
version of Python that simply won't work with your code. Thisis especialy true if you're going to use SConsto build
source code that you plan to distribute publicly, where you can't be sure of the Python version that an anonymous
remote user might use to try to build your software.

SCons provides an Ensur ePyt honVer si on function for this. You simply pass it the major and minor versions
numbers of the version of Python you require;

Ensur ePyt honVer si on(2, 5)

And then SCons will exit with the following error message when a user runs it with an unsupported earlier version
of Python:

% scons -Q
Python 2.5 or greater required, but you have Python 2.3.6

26.2. Verifying the SCons Version: the
Ensur eSConsVer si on Function

You may, of course, write your SConscr i pt filesto use features that were only added in recent versions of SCons.
When you publicly distribute software that is built using SCons, it's helpful to have SCons verify the version being
used and exit gracefully with an error message if the user's version of SCons won't work with your SConscr i pt



Explicitly Terminating SCons While Reading
SConscri pt Files: the Exi t Function

files. SCons provides an Ensur eSConsVer si on function that verifies the version of SCons in the same the
Ensur ePyt honVer si on function verifies the version of Python, by passing in the major and minor versions
numbers of the version of SCons you require:

Ensur eSConsVer si on(1, 0)

And then SCons will exit with the following error message when a user runs it with an unsupported earlier version
of SCons:

% scons -Q
SCons 1.0 or greater required, but you have SCons 0.98.5

26.3. Explicitly Terminating SCons While
Reading SConscri pt Files: the Exi t Function

SConssupportsan Exi t function which can be used to terminate SConswhilereading the SConscr i pt files, usually
because you've detected a condition under which it doesn't make sense to proceed:

i f ARGUMENTS. get (" FUTURE' ) :
print("The FUTURE option is not supported yet!")
Exit(2)

env = Environment ()

env. Progran(' hello.c")

% scons - Q FUTURE=1

The FUTURE option is not supported yet!
% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

TheExi t functiontakesasan argument the (numeric) exit statusthat you want SConsto exit with. If you don't specify
avalue, the default isto exit with O, which indicates successful execution.

Note that the Exi t function is equivalent to calling the Python sys. exi t function (which theit actually calls), but
because Exi t isa SCons function, you don't have to import the Python sys module to use it.

26.4. Searching for Files: the Fi ndFi | e
Function

The Fi ndFi | e function searches for afile in alist of directories. If there is only one directory, it can be given
as a simple string. The function returns a File node if a matching file exists, or None if no file is found. (See the
documentation for the d ob function for an aternative way of searching for entriesin adirectory.)

# one directory

Iy
=== SCONS 160



Searching for Files: the Fi ndFi | e Function

print("%"%indFile('mssing , '."))
t = FindFile('exists', ".")
print("% 9%"%t._ class_, t))

% scons -Q

None

<cl ass ' SCons. Node. FS. Fil e' > exi sts
scons: ' is up to date.

# several directories

includes = [ ".', "include', 'src/include']

headers = [ 'nonesuch.h', "config.h', '"private.h', "dist.h']
for hdr in headers:

print('%12s: %' % hdr, FindFile(hdr, includes)))

% scons -Q

nonesuch. h : None

config.h : config.h

private.h : src/include/private.h
dist.h : include/dist.h

scons: ~.' is up to date.

If the file exists in more than one directory, only the first occurrence is returned.

print(FindFile('multiple , ['subl', 'sub2', 'sub3']))
print(FindFile('multiple , ['sub2', 'sub3', 'subl']))
print(FindFile('multiple , ['sub3', 'subl', 'sub2']))

% scons -Q

subl/ mul tiple

sub2/ mul tiple

sub3/mul tiple

scons: ' is up to date.

In addition to existing files, Fi ndFi | e will also find derived files (that is, non-leaf files) that haven't been built yet.
(Leaf files should already exist, or the build will fail!)

# Neither file exists, so build will fail

Command(' derived', 'leaf', 'cat >$TARGET $SOURCE )
print(FindFile('leaf', '."))
print(FindFile(' derived , "."))

% scons -Q

| eaf

deri ved

cat > derived | eaf

# Only 'leaf' exists

Iy
=== SCONS 161



Handling Nested Lists: the Fl at t en Function

Command(' derived', 'leaf', 'cat >$TARGET $SOURCE )
print(FindFile('leaf', '."))
print(FindFile('derived , "."))

% scons -Q

| eaf

derived

cat > derived | eaf

If asourcefileexists, Fi ndFi | e will correctly return the namein the build directory.

# Only '"src/leaf' exists
VariantDir('build , "'src')
print(FindFile('leaf', "build))

% scons -Q
bui | d/ | eaf
scons: ~.' is up to date.

26.5. Handling Nested Lists: the Fl att en
Function

SCons supportsa Fl at t en function which takes an input Python sequence (list or tuple) and returns a flattened list
containing just the individual elements of the sequence. This can be handy when trying to examine alist composed of
the lists returned by calls to various Builders. For example, you might collect object files built in different ways into
one call to the Pr ogr amBuilder by just enclosing them in alist, asfollows:

objects = |

oj ect (' progl.c'),

oj ect (' prog2.c', CCFLAGS='-DFQO ),
]
Pr ogr an( obj ect s)

Because the Builder callsin SCons flatten their input lists, thisworks just fine to build the program:

% scons -Q

cc -0 progl.o -c progl.c

CC -0 prog2.0 -c -DFQOO prog2.c
cc -0 progl progl.o prog2.o0

But if you were debugging your build and wanted to print the absolute path of each object filein the obj ect s list,
you might try the following simple approach, trying to print each Node'sabspat h attribute:

objects = |

oj ect (' progl.c'),

oj ect (' prog2.c', CCFLAGS='-DFQO ),
]
Pr ogr an( obj ect s)

Iy
=== SCONS 162



Finding the Invocation Directory: the Get LaunchDi r
Function

for object file in objects:
print(object file.abspath)

This does not work as expected because each call to st r is operating an embedded list returned by each Obj ect
call, not on the underlying Nodes within those lists:

% scons -Q
AttributeError: 'NodeList' object has no attribute 'abspath':
File "/home/ ny/ project/SConstruct”, |ine 8:
print (object _file.abspath)

The solutionisto usethe FI at t en function so that you can pass each Nodeto the st r separately:

objects = |

oj ect (' progl.c'),

oj ect (' prog2.c', CCFLAGS='-DFQO),
]
Pr ogr am( obj ect s)

for object file in Flatten(objects):
print(object file.abspath)

% scons -Q

/ hone/ me/ proj ect/ progl. o

/ honme/ me/ pr oj ect/ prog2. o

cc -0 progl.o -c progl.c

CC -0 prog2.0 -c -DFQO prog2.c
CC -0 progl progl.o prog2.o0

26.6. Finding the Invocation Directory: the
Get LaunchDi r Function

If you need to find the directory from which the user invoked the scons command, you can use the Get LaunchDi r
function:

env = Environnent (
LAUNCHDI R = Get LaunchDir (),
)
env. Command(' directory build_info',
' SLAUNCHDI R/ bui | d_i nf o
Copy(' $TARGET' , ' $SOURCE'))

Because SCons is usually invoked from the top-level directory in which the SConst ruct file lives, the Python
0s. get cwd() isoften equivalent. However, the SCons- u, - Uand - Dcommand-line options, when invoked from a
subdirectory, will cause SConsto changeto thedirectory inwhichthe SConst r uct fileisfound. When those options

Iy
=== SCONS 163



Declaring Additional Outputs: the Si deEf f ect
Function

are used, Get LaunchDi r will still return the path to the user's invoking subdirectory, allowing the SConscr i pt
configuration to still get at configuration (or other) files from the originating directory.

26.7. Declaring Additional Outputs: the
Si deEf f ect Function

Sometimes the way an action is defined causes effects on files that SCons does not recognize as targets. The
Si deEf f ect method can be used to informs SCons about such files. This can be used just to flag a dependency for
use in subsequent build steps, although there is usually a better way to do that. The primary use for the Si deEf f ect
method is to prevent two build steps from simultaneously modifying or accessing the same file in a way that could
impact each other.

In this example, the rule to build f i | e1 will also put datainto | og, which is used as a source for the command to
generate f i | €2, but | og is unknown to SCons on a clean build: it neither exists, nor is it a target output by any
builder. The SConscri pt usesSi deEf f ect toinform SCons about the additional output file.

env = Environnent ()
f2 = env. Conmand(
target="file2",
source='1o0g",
acti on=Copy(' $TARCET' , ' $SOURCE')
)
f1 = env. Command(
target="filel",
source=[],
action='"echo >$TARCET datal; echo >l og updated filel'

)
env. Si deEffect ('l og', f1)

Without the Si deEf f ect , this build would fail with a message Source "1 og
target “file2',butnow itcan proceed:

not found, needed by

% scons -Q
echo > filel datal; echo >l og updated filel
Copy("file2", "log")

However, it is better to actually identify | og asatarget, since in this case that'swhat it is:

env = Environment ()
f2 = env. Conmand(
target="file2",
source='1o0g",
act i on=Copy (' $TARGET' , ' $SOURCE')
)
f1 = env. Comrand(
target=["filel", 'log'],
source=[],
action='echo >$TARCGET datal; echo >l og updated filel'

Iy
=== SCONS 164



Declaring Additional Outputs: the Si deEf f ect
Function

% scons -Q
echo > filel datal; echo >l og updated filel
Copy("file2", "log")

Ingenera, Si deEf f ect isnot intended for the case when acommand produces extratarget files (that is, fileswhich
will be used as sources to other build steps). For example, the the Microsoft Visual C/C++ compiler is capable of
performing incremental linking, for which it usesastatusfile - such that linking f 0o. exe aso producesaf oo. i | k,
or usesitif it wasalready present, if the/ | NCREVMENTAL option was supplied. Specifying f 0o. i | k asaside-effect
of f 00. exe isnot arecommended use of Si deEf f ect sincef oo. i | k isused by the link. SCons handles side-
effect filesdightly differently initsanalysis of the dependency graph. When acommand produces multiple output files,
they should be specified as multiple targets of the call to the relevant builder function. The Si deEf f ect function
itself should really only be used when it's important to ensure that commands are not executed in parallel, such as
when a"periphera" file (such as alog file) may actually be updated by more than one command invocation.

Unfortunately, the tool which sets up the Pr ogr ambuilder for the M SV C compiler chain does not come prebuilt with
an understanding of the details of the.. i | k example - that the target list would need to change in the presence of that
specific option flag. Unlike the trivial example above where we could simply tell the Cormand builder there were
two targets of the action, modifying the chain of events for abuilder like Pr ogr am though not inherently complex,
is definitely an advanced SCons topic. It's okay to use Si deEf f ect here to get started, as long as it comes with
an understanding that it's "not quite right". Perhaps leave a comment in the file as a reminder, if it does turn out to
cause problems later.

So if the main use is to prevent parallelism problems, here is an example to illustrate. Say a program that you need
to call to build atarget file will also update a log file describing what the program does while building the target.
The following configuration would have SCons invoke a hypothetical script named build (in the local directory) with
command-line argumentstelling it to write log information to acommon | ogfi | e. t xt file:

env = Environnent ()
env. Comand(
target="filel. out',
source='filel.in",
action='./build --log logfile.txt $SOURCE $TARGET'

env. Comand(
target="file2. out',
source='file2.in",
action='"./build --log logfile.txt $SOURCE $TARGET'

This can cause problems when running the build in parallel if SCons decides to update both targets by running both
program invocations at the same time. The multiple program invocations may interfere with each other writing to the
common log file, leading at best to intermixed output in the log file, and at worst to an actual failed build (on a system
like Windows, for example, where only one process at atime can open the log file for writing).

We can make surethat SCons does not run these build commands at the sametimeby usingthe Si deEf f ect function
to specify that updatingthel ogf i | e. t xt fileisasideeffect of building thespecifiedf i | el andfi | e2 targetfiles:

env = Environment ()
f1 = env. Conmand(
target="filel. out",
source="filel.in',
action='"./build --log logfile.txt $SOURCE $TARGET'

Iy
=== SCONS 165



Virtual environments (virtualenvs)

)
f2 = env. Conmand(

target="fil e2. out",

source="file2.in",

action="./build --log logfile.txt $SOURCE $TARGET'

)
env. SideEffect("logfile.txt', f1 + f2)

This makes sure the the two ./build steps are run sequentially, even with the - - j obs=2 in the command line:

% scons -Q --jobs=2
./build --log logfile.txt filel.in filel. out
./build --log logfile.txt file2.in file2. out

The Si deEf f ect function can be called multiple times for the same side-effect file. In fact, the name used as a
Si deEf f ect does not even need to actually exist as a file on disk - SCons will still make sure that the relevant
targets will be executed sequentially, not in parallel. The side effect is actually a pseudo-target, and SCons mainly
cares whether nodes are listed as depending on it, not about its contents.

env = Environnent ()

f1 = env. Command('filel.out', [], action='echo >$TARGET datal')
env. Si deEf fect (' not _really updated', f1)

f2 = env. Command('file2.out', [], action='"echo >$TARGET dat a2')
env. Si deEf fect (' not _really updated', f2)

% scons -Q --jobs=2
echo > filel. out datal
echo > file2. out data2

26.8. Virtual environments (virtualenvs)

Virtualenv is atool to create isolated Python environments. A python application (such as SCons) may be executed
within an activated virtualenv. The activation of virtualenv modifies current environment by defining some virtual env-
specific variables and modifying search PATH, such that executablesinstalled within virtualenv's home directory are
preferred over the onesinstalled outside of it.

Normally, SCons uses hard-coded PATH when searching for external executables, so it always picks-up executables
from these pre-defined locations. This applies also to python interpreter, which is invoked by some custom SCons
tools or test suites. This means, when running SConsin avirtualenv, an eventual invocation of python interpreter from
SCons script will most probably jump out of virtualenv and execute python executable found in hard-coded SCons
PATH, not the one which is executing SCons. Some users may consider this as an inconsistency.

This issue may be overcome by using the --enabl e-virtual env option. The option automatically
imports virtualenv-related environment variables to al created construction environment env[' ENV' ],
and modifies SCons PATH appropriately to prefer virtualenv's executables. Setting environment variable
SCONS_ENABLE_VI RTUALENV=1 will have same effect. If virtualenv support is enabled system-vide by the
environment variable, it may be suppressed with the- - i gnor e- vi r t ual env option.

Insideof SConscri pt,agloba functionVi r t ual env isavailable. It returns apath to virtualenv's home directory,
or None if scons is not running from virtualenv. Note that this function returns a path even if sconsis run from an
unactivated virtualenv.

Iy
=== SCONS 166



27 Using SCons with other
build tools

Sometimes a project needs to interact with other projects in various ways. For example, many open source projects
make use of components from other open source projects, and want to use those in their released form, not recode their
buildsinto SCons. Asanother example, sometimestheflexibility and power of SConsisuseful for managing the overall
project, but developers might like faster incremental builds when making small changes by using a different tool.

This chapter shows some techniques for interacting with other projects and tools effectively from within SCons.

27.1. Creating a Compilation Database

Tooling to perform analysis and modification of source code often needs to know not only the source code itself, but
also how it will be compiled, as the compilation line affects the behavior of macros, includes, etc. SCons has arecord
of thisinformation once it has run, in the form of Actions associated with the sources, and can emit this information
so tools can useit.

The Clang project has defined a JSON Compilation Database. Thisdatabaseisin common use asinput into Clang tools
and many IDEs and editors as well. See JSON Compilation Database Format Specification [https://clang.llvm.org/
docs/JISON CompilationDatabase.html] for completeinformation. SCons can emit acompilation databasein thisformat
by enabling the conpi | ati on_db tool and calling the Conpi | at i onDat abase builder (available since scons
4.0).

The compilation database can be popul ated with source and output files either with pathsrel ative to the top of the build,
or using absolute paths. Thisis controlled by COVPI LATI ONDB_USE_ABSPATH=( Tr ue| Fal se) which defaults
to Fal se. Theentriesin thisfile can befiltered by using COMPI LATI ONDB_PATH_FI LTER="' patt ern' where
thefilter pattern is a string following the Python f nmat ch [https://docs.python.org/3/library/fnmatch.html] syntax.
Thisfiltering can be used for outputting different build variants to different compilation database files.

The following example illustrates generating a compilation database containing absolute paths:
env = Environmnment ( COVPI LATI ONDB_USE_ABSPATH=Tr ue)
env. Tool (' conpi |l ati on_db")

env. Conpi | ati onDat abase()
env. Progran(' hello.c")

% scons -Q


https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://docs.python.org/3/library/fnmatch.html
https://docs.python.org/3/library/fnmatch.html

Creating a Compilation Database

Bui | di ng conpi |l ati on dat abase conpil e_comrands. j son
cc -0 hello.o -c hello.c
cc -0 hello hello.o

conpi | e_conmmands. j son contains:

{
"command": "gcc -o hello.o -c hello.c",
"directory": "/hone/user/sandbox",
“file": "/home/user/sandbox/hello.c",
"out put": "/hone/user/sandbox/ hell o. 0"
}

Notice that the generated database contains only an entry for the hel | 0. ¢/ hel | 0. o pairing, and nothing for the
generation of thefinal executable hel | o - thetransformation of hel | 0. o to hel | o does not have any information
that affects interpretation of the source code, so it is not interesting to the compilation database.

Although it can be alittle surprising at first glance, a compilation database target is, like any other target, subject to
scons target selection rules. This means if you set a default target (that does not include the compilation database),
or use command-line targets, it might not be selected for building. This can actually be an advantage, since you don't
necessarily want to regenerate the compilation database every build. The following example shows selecting relative
paths (the default) for output and source, and also giving a non-default name to the database. In order to be able to
generate the database separately from building, an aias is set referring to the database, which can then be used as a
target - here we are only building the compilation database target, not the code.

env = Environnent ()

env. Tool (' conpil ati on_db")

cdb = env. Conpi | ati onDat abase(' conpi | e_dat abase. j son')
Alias('cdb', cdb)

env. Progran('test_nain.c')

% scons -Q cdb
Bui | di ng conpil ati on dat abase conpil e_dat abase. j son

conpi | e_dat abase. j son contains:

{
"command": "gcc -o test _main.o -c test_mmin.c",
“directory": "/hone/user/sandbox",
“file": "test _main.c",
"output": "test_main.o"
}

Thefollowing (incomplete) example shows using filtering to separate build variants. In the case of using variants, you
want different compilation databases for each, since the build parameters differ, so the code analysis needs to see the

Iy
=== SCONS 168



Ninja Build Generator

correct build linesfor the 32-bit build and 64-bit build hinted at here. For simplicity of presentation, the example omits
the setup details of the variant directories:

env = Environment ()
env. Tool ("conpi |l ati on_db")

envl = env. Cl one()
env1[ " COVP|I LATI ONDB PATH FILTER'] = "build/Ilinux32/*"
envl. Conpi | ati onDat abase(" conpi | e_conmands- | i nux32.j son")

env2 = env. Cl one()

env2[ " COVPI LATI ONDB_PATH FILTER'] = "buil d/Ii nux64/*"
env2. Conpi | at i onDat abase(' conpi | e_conmands- | i nux64.j son')

conpi | e_commands- | i nux32. j son contains:

{
"command": "gcc -o hello.o -c hello.c",
"directory": "/hone/ mats/github/scons/exp/conpdb”,
“file": "hello.c",
"output": "hello.o"

}

conpi | e_commands- | i nux64. j son contains:

{
"command": "gcc -nB4 -0 build/linux64/test main.o -c test_main.c",
“directory": "/hone/user/sandbox",
“file": "test _main.c",
"out put": "build/linux64/test_main.o"
}

27.2. Ninja Build Generator

Note

Thisis an experimental new feature. It is subject to change and/or removal without a depreciation cycle.
Loading the ni nj a tool into SCons will make significant changesin SCons normal functioning.

» SCons will no longer execute any commands directly and will only create the bui | d. ni nj a and run
ninja

» Any targets specified on the command line will be passed along to ninja

Iy
=== SCONS 169



Ninja Build Generator

To enable this feature you'll need to use one of the following:

# On the conmand |ine --experinental =ni nja

# Or in your SConstruct
Set Option(' experinental', 'ninja')

Ninjaisasmall build system that triesto be fast by not making decisions. SCons can at times be slow because it makes
lots of decisions to carry out its goa of "correctness'. The two tools can be paired to benefit some build scenarios:
by using the ni nj a tool, SCons can generate the build file ninja uses (basically doing the decision-making ahead
of time and recording that for ninja), and can invoke ninja to perform a build. For situations where relationships are
not changing, such as edit/build/debug iterations, this works fine and should provide considerable speedups for more
complex builds. The implication is if there are larger changes taking place, ninjais not as appropriate - but you can
always use SCons to regenerate the build file. Y ou are NOT advised to use this for production builds.

To use the ni nj a tool you'll need to first install the Python ninja package, as the tool depends on being able to do
ani nport of the package. This can be donevia

# In a virtual env, or "python" is the native executabl e:
python -mpip install ninja

# W ndows usi ng Python | auncher:
py -mpip install ninja

# Anaconda:
conda install -c conda-forge ninja

Reminder that like any non-default tool, you need to initialize it before use (e.g. env. Tool (' ni nja')).

It is not expected that the Ni nj a builder will work for all builds at this point. It is still under active development.
If you find that your build doesn't work with ninja please bring this to the users mailing list [https://pairlist4.pair.net/
mailman/listinfo/scons-users] or #scons- hel p [https://discord.gg/bXVpWAY] channel on our Discord server.

Specifically if your build has many (or even any) Python function actions you may find that the ninja build will be
dower as it will run ninja, which will then run SCons for each target created by a Python action. To alleviate some
of these, especialy those Python based actions built into SCons there is special logic to implement those actions via
shell commands in the ninja build file.

When ninjaruns the generated ninja build file, ninjawill launch scons as a daemon and feed commands to that scons
process which ninjais unable to build directly. This daemon will stay alive until explicitly killed, or it times out. The
timeout is set by $NI NJA_SCONS_DAEMON_KEEP_AL| VE.

The daemon will be restarted if any SConscr i pt file(s) change or the build changes in away that ninja determines
it needs to regenerate the build.ninjafile

See:

Ninja Build System [https://ninja-build.org/]
Ninja File Format Specification [https://ninja-build.org/manual .html#ref_ninja_file]

Iy
=== SCONS 170


https://pairlist4.pair.net/mailman/listinfo/scons-users
https://pairlist4.pair.net/mailman/listinfo/scons-users
https://pairlist4.pair.net/mailman/listinfo/scons-users
https://discord.gg/bXVpWAy
https://discord.gg/bXVpWAy
https://ninja-build.org/
https://ninja-build.org/
https://ninja-build.org/manual.html#ref_ninja_file
https://ninja-build.org/manual.html#ref_ninja_file

28 Troubleshooting

The experience of configuring any software build tool to build alarge code base usually, at some point, involvestrying
to figure out why thetool isbehaving acertain way, and how to get it to behave theway you want. SConsisno different.
This appendix contains anumber of different waysin which you can get some additional insight into SCons' behavior.

Note that we're always interested in trying to improve how you can troubleshoot configuration problems. If you run
into a problem that has you scratching your head, and which there just doesn't seem to be a good way to debug, odds
are pretty good that someone else will run into the same problem, too. If so, please let the SCons devel opment team
know using the contact information at https://scons.org/contact.html so that we can use your feedback to try to come
up with a better way to help you, and others, get the necessary insight into SCons behavior to help identify and fix
configuration issues.

28.1. Why is That Target Being Rebuilt? the - -
debug=expl ai n Option

Let'slook at asimple example of a misconfigured build that causes atarget to be rebuilt every time SConsis run:

# Intentionally misspell the output file nane in the
# comand used to create the file:
Command('file.out', "file.in', 'cp $SOURCE fil e.oout")

(Note to Windows users. The POSIX cp command copies the first file named on the command line to the second file.
In our example, it copiesthefil e. i nfiletothefil e. out file)

Now if we run SCons multiple times on this example, we see that it re-runs the cp command every time:

% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout
% scons -Q
cp file.in file.oout

In this example, the underlying cause is obvious: we've intentionally misspelled the output file name in the cp
command, so the command doesn't actually build the fi | e. out file that we've told SCons to expect. But if the


https://scons.org/contact.html

Why is That Target Being Rebuilt? the - -
debug=expl ai n Option

problem weren't obvious, it would be hel pful to specify the - - debug=expl ai n option on the command lineto have
SConstell us very specifically why it's decided to rebuild the target:

% scons -Q --debug=expl ai n
scons: building file.out' because it doesn't exi st
cp file.in file.oout

If this had been a more complicated example involving alot of build output, having SCons tell us that it's trying to
rebuild the target file because it doesn't exist would be an important clue that something was wrong with the command
that we invoked to build it.

Notethat you can also use - - war n=t ar get - not - bui | t which checkswhether or not expected targets exist after
abuild rule is executed.

% scons -Q --warn=target-not-built
cp file.in file.oout

scons: warning: Cannot find target file.out after buil ding

File "/ Users/bdbaddog/ devel / scons/ git/as_scons/scripts/scons. py", line 97, in <modul e>

The - - debug=expl ai n option also comes in handy to help figure out what input file changed. Given a ssimple
configuration that builds a program from three source files, changing one of the source files and rebuilding with the
- - debug=expl ai n option shows very specifically why SCons rebuilds the files that it does:

% scons -Q

cc -ofilel.o -c filel.c

cc -ofile2.0 -c file2.c

cc -ofile3.0 -c file3.c

cc -o prog filel.o file2.0 file3.0

% [ CHANGE THE CONTENTS OF fil e2.c]

% scons -Q --debug=expl ai n

scons: rebuilding "file2. o' because “file2.c' changed
cc -ofile2.0 -c file2.c

scons: rebuilding " prog' because “file2. 0" changed
cc -o prog filel.o file2.0 file3.0

Thisbecomes even more helpful in identifying when afileisrebuilt dueto achangein animplicit dependency, such as
anincuded. hfile. If thefi |l el. c andfi | 3. c filesin our examplebothincluded ahel | o. h file, then changing
that included file and re-running SCons with the - - debug=expl ai n option will pinpoint that it's the change to the
included file that starts the chain of rebuilds:

% scons -Q

cc -o filel.o -c -1. filel.c
cc -o file2.o -c -1. file2.c
cc -o file3.o0 -c -1. file3.c

cc -o prog filel.o file2.0 file3.0

% [ CHANGE THE CONTENTS OF hel | o. h]

% scons -Q --debug=expl ai n

scons: rebuilding "filel. o' because "hello.h' changed

cc -o filel.o -c -1. filel.c
scons: rebuilding "file3.0" because "hello.h' changed
cc -o file3.o -c -1. file3.c

scons: rebuilding “prog' because:
“filel. o' changed
“file3.0" changed

cc -o prog filel.o file2.0 file3.0

Iy
=== SCONS 172



What's in That Construction Environment? the Dunp
Method

(Notethat the- - debug=expl ai n option will only tell you why SCons decided to rebuild necessary targets. It does
not tell you what files it examined when deciding not to rebuild atarget file, which is often a more valuable question
to answer.)

28.2. What's in That Construction
Environment? the Dunp Method

When you create a construction environment, SCons populatesit with construction variablesthat are set up for various
compilers, linkersand utilitiesthat it finds on your system. Although thisisusually helpful and what you want, it might
befrustratingif SConsdoesn't set certain variablesthat you expect to be set. In situationslikethis, it's sometimes hel pful
to use the construction environment Dunp method to print all or some of the construction variables. Note that the
Dunp method returnsthe representation of the variablesin the environment for you to print (or otherwise manipul ate):

env = Envi ronnent ()
print (env. Dunmp())

On aPOSIX system with gcc installed, this might generate:

% scons
scons: Readi ng SConscript files ...
{ "BULDERS : { ' Internallnstall': <function InstallBuil derWapper at 0x700000>,

" Internallnstall As': <function Install AsBuil der Wapper at 0x700000>,

' Internal I nstall VersionedLi b': <function |Install Versi onedBuil der Wapper a
' CONFI GUREDI R : ' #/.sconf_tenp',
' CONFI GURELOG : ' #/ config.log',
" CPPSUFFI XES': [ '.c',

. C,

. CXX",
.cpp',
. C++'
.cc',
. h',
" H,
. hxx',
-hpp",
". hh',
"L F,
fpp',
' . FPP',

. Spp’,
‘. SPP',
.sx'1,
"DSUFFI XES' : ['.d'],
"Dir': <SCons.Defaults. Variable Method_Cal |l er object at 0x700000>,
"Dirs': <SCons.Defaults. Variable Method Caller object at 0x700000>,
"ENV' : {" PATH : '/usr/local/bin:/opt/bin:/bin:/usr/bin:/snap/bin'},
' ESCAPE' : <function escape at 0x700000>,

"File': <SCons.Defaults. Variable Method Caller object at 0x700000>,

Iy
=== SCONS 173



What's in That Construction Environment? the Dunp
Method

scons:

' HOST_ARCH : 'arnmb4',

'HOST_OS': ' posi x',

| DLSUFFI XES': ['.idl"', '".IDL'],

I NSTALL' : <function copyFunc at 0x700000>,

| NSTALLVERSI ONEDLI B' : <function copyFuncVersi onedLi b at 0x700000>,

"LIBPREFI X : "lib'",
" LI BPREFI XES' : [' $LIBPREFI X' ],
"LIBSUFFI X" : '.a',

LI BSUFFI XES' : [' $LI BSUFFI X', ' $SHLI BSUFFI X' ],
MAXLI NELENGTH : 128072,

' OBJPREFI X' : "',
"OBJSUFFI X' : '.0',

' PLATFORM : ' posi x',
' PROGPREFI X' @ ' ",

' PROGSUFFI X' @ ' ",

PSPAWN : <function piped_env_spawn at 0x700000>,
"RDirs': <SCons.Defaults. Variabl e Method_Cal | er object at 0x700000>,
' SCANNERS' : [ <SCons. Scanner . Scanner Base obj ect at 0x700000>],

" SHELL': 'sh',
' SHLI BPREFI X' : ' $LI BPREFI X',
"SHLI BSUFFI X' : ' .so',

' SHOBJPREFI X' : ' $OBJPREFI X',

' SHOBJSUFFI X' : ' $OBJSUFFI X',

' SPAWN : <function subprocess_spawn at 0x700000>,

' TARGET_ARCH : None,

' TARGET_OS' : None,

' TEMPFI LE : <cl ass ' SCons. Pl at f orm TenpFi | eMuinge' >,

' TEMPFI LEARGESCFUNC : <function quote_spaces at 0x700000>,

' TEMPFI LEARGJO N : ' ',

' TEMPFI LEPREFI X' : ' @),

"TOOLS : ['install', "install'],

' _CPPDEFFLAGS : ' ${_defi nes( CPPDEFPREFI X, CPPDEFI NES, CPPDEFSUFFI X, __env__, '
' TARGET, SOURCE)}',

' _CPPI NCFLAGS : ' ${_concat (| NCPREFI X, CPPPATH, INCSUFFIX, __env__, RDirs, '
' TARGET, SOURCE, affect_signature=False)}",

' _LIBDI RFLAGS : ' ${_concat (LI BDI RPREFI X, LI BPATH, LIBDI RSUFFI X, _ _env__, '
"RDirs, TARCGET, SOURCE, affect_signature=Fal se)}"’,

' _LIBFLAGS : ' ${_concat (LI BLI NKPREFI X, LIBS, LIBLINKSUFFIX, __env_ )}"',

' __DRPATH : '$_DRPATH ,

' __ DSHLI BVERSI ONFLAGS' : "'${__libversionflags(__env__, "DSHLI BVERSI ON', " _DSHLI| BVERSI ONFLAC

' __LDMODULEVERSI ONFLAGS' : " ${__Ili bversionflags(__env__, " LDMODULEVERS| ON', " _LDMODULEVERSI

' __RPATH : '$_RPATH ,

' __SHLIBVERSI ONFLAGS' : " ${__libversionflags(__env__, "SHLI BVERSI ON', " _SHLI BVERSI ONFLAGS")

' lib_ either_version flag': <function _|lib_either_version_flag at 0x700000>,

__libversionflags': <function __|ibversionflags at 0x700000>,

_concat': <function _concat at 0x700000>,

_defines': <function _defines at 0x700000>,

_stripixes': <function _stripixes at 0x700000>}

scons: done readi ng SConscript files.

scons: Building targets ...

“.' is up to date.

scons: done buil ding targets.

On aWindows system with Visual C++ the output might look like:

Iy
=== SCONS 174



What's in That Construction Environment? the Dunp
Method

C.\ >scons
scons: Readi ng SConscript files ...
{ "BULDERS : { 'Object': <SCons.Buil der. ConpositeBuil der object at 0x700000>,
" PCH : <SCons. Bui | der. Bui | der Base obj ect at 0x700000>,
'"RES : <SCons. Bui | der. Bui | der Base obj ect at 0x700000>,
' SharedObj ect' : <SCons. Bui | der. Conposi t eBui | der obj ect at 0x700000>,
"StaticObject': <SCons. Buil der. ConpositeBuil der object at 0x700000>,
" Internallnstall': <function InstallBuil der Wapper at 0x700000>,
" Internallnstall As': <function Install AsBuil der Wapper at 0x700000>,
' _Internal I nstall VersionedLi b': <function |Install VersionedBuil der Wapper
"CC: 'cl',
' CCCOM : <SCons. Acti on. Functi onActi on object at 0x700000>,
' CCDEPFLAGS' : ' /showl ncl udes',
' CCFLAGS' : ['/nol ogo'],
' CCPCHFLAGS' : <function gen_ccpchfl ags at 0x700000>,
' CCPDBFLAGS : ['${(PDB and "/Zz7") or ""}'],
"CFILESUFFI X' : ".c',
" CFLAGS : [],
' CONFI GUREDI R : ' #/.sconf_tenp',
' CONFI GURELOG : ' #/ config.log',
' CPPDEFPREFI X : '/ D,
' CPPDEFSUFFI X' @ "',
" CPPSUFFI XES': [ '.c',
. C,
. CXX",
.cpp',
. C++'
.cc',
".h',
" H,
. hxx',
-hpp*,

. Spp’,
‘. SPP',
.sx'1,
"CXX @ ' $CC ,
" CXXCOM : ' ${ TEMPFI LE( " $CXX $ MSVC OQUTPUT_FLAG /¢ $CHANGED SOURCES $CXXFLAGS '
' $CCFLAGS $_CCCOMCOM', " $CXXCOVSTR') } ',
" CXXFI LESUFFI X' : '.cc',
"CXXFLAGS': ["$(', "/TP', "$)'],
'"DSUFFI XES' : ['.d'],
"Dir': <SCons.Defaults. Variable Method_Cal |l er object at 0x700000>,
"Dirs': <SCons.Defaults. Variable Method Caller object at 0x700000>,
"ENV': { 'PATH : ' C \\ W NDOAB\\ Syst en32',
' PATHEXT' : ' . COM . EXE; . BAT; . C\MD
' SystenRoot': ' C\\ W NDONS },
' ESCAPE' : <function escape at 0x700000>,

Iy
=== SCONS 175



What's in That Construction Environment? the Dunp
Method

"File': <SCons.Defaults. Variable Method Caller object at 0x700000>,
' HOST_ARCH : 'arnmb4',

'HOST_OS': 'wi n32',

| DLSUFFI XES': ['.idl"', '".IDL'],

| NCPREFI X' : " /1",

| NCSUFFI X' @ "',

"INSTALL' : <function copyFunc at 0x700000>,

| NSTALLVERSI ONEDLI B' : <function copyFuncVersi onedLi b at 0x700000>,
LEXUNI STD : ['--nounistd'],

"LI BPREFI X" : "',
" LI BPREFI XES' : [' $LIBPREFI X' ],
"LIBSUFFI X' : ".lib",

LI BSUFFI XES' : [' $LI BSUFFI X ],

MAXLI NELENGTH : 2048,

MBVC_SETUP_RUN : True,

NI NJA_DEPFI LE_PARSE_FORMAT' : ' nsvc',

' OBJPREFI X : '',

' OBJSUFFI X : '.obj",

' PCHOOM : ' $CXX / Fo${ TARGETS[ 1]} $CXXFLAGS $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS '
' $_CPPI NCFLAGS /¢ $SOURCES / YC$PCHSTOP / Fp${ TARGETS[ 0] }
' $CCPDBFLAGS $PCHPDBFLAGS' ,

PCHPDBFLAGS' : [' ${(PDB and "/Yd") or ""}'],

PLATFORM : ' wi n32',

' PROGPREFI X' : ' ",

' PROGSUFFI X' : ' . exe',

" PSPAWN : <function piped_spawn at 0x700000>,
"RC: 'rc',

' RCCOM : <SCons. Acti on. Functi onActi on object at 0x700000>,

"RCFLAGS' : ['/nol ogo'],

RCSUFFI XES': ['.rc', '.rc2'],

"RDirs': <SCons.Defaults. Variabl e Method_Cal | er object at 0x700000>,

' SCANNERS' : [ <SCons. Scanner . Scanner Base obj ect at 0x700000>],

'SHCC : ' $CC ,

' SHCCCOM : <SCons. Act i on. Functi onActi on object at 0x700000>,

' SHCCFLAGS' : [' $CCFLAGS' ],

' SHCFLAGS' : [' $CFLAGS'],

" SHCXX' : ' $CXX'

' SHCXXCOM : ' ${ TEMPFI LE( " $SHCXX $_MSVC_OUTPUT_FLAG / ¢ $CHANGED_ SOURCES
' $SHCXXFLAGS $SHCCFLAGS $_CCCOMCOM', " $SHCXXCOMSTR') } ',

' SHCXXFLAGS' : [' $CXXFLAGS' ],

"SHELL': ' command’,

" SHLI BPREFI X' @ "',

"SHLIBSUFFI X' : *.dlI",

' SHOBJPREFI X' : ' $OBJPREFI X',

' SHOBJSUFFI X' : ' $OBJSUFFI X',

' SPAWN : <function spawn at 0x700000>,

' STATI C_AND_SHARED OBJECTS ARE_THE SAME' : 1,

' TARGET_ARCH : None,

' TARGET_OS' : None,

' TEMPFI LE : <cl ass ' SCons. Pl at f orm TenpFi | eMinge' >,

' TEMPFI LEARGESCFUNC : <function quote_spaces at 0x700000>,

' TEMPFI LEARGJON : '\n',

' TEMPFI LEPREFI X' : ' @),

"TOOLS : ['msvc', 'install', 'install'],

Iy
=== SCONS 176



What's in That Construction Environment? the Dunp
Method

VSWHERE' : None,
_CCCOMCOM : ' $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS $CCPCHFLAGS $CCPDBFLAGS' ,
_CPPDEFFLAGS' : ' ${_defi nes( CPPDEFPREFI X, CPPDEFI NES, CPPDEFSUFFI X, __env__, '
' TARGET, SOURCE)}',
_CPPI NCFLAGS' : ' ${_concat (| NCPREFI X, CPPPATH, |INCSUFFI X, __env__, RDirs, '
' TARGET, SOURCE, affect_signature=False)}",
_LI BDI RFLAGS' : ' ${_concat (LI BDI RPREFI X, LI BPATH, LIBDI RSUFFIX, __env__, '
"RDirs, TARCGET, SOURCE, affect_signature=Fal se)}"’,
_LIBFLAGS' : ' ${_concat (LI BLI NKPREFI X, LI BS, LIBLINKSUFFIX, _ env__)}",
_MBVC QUTPUT_FLAG : <function msvc_out put _flag at 0x700000>,
_ DSHLI BVERSI ONFLAGS' : ' ${__libversionflags(__env__, "DSHLI BVERSI ON', " _DSHLI BVERSI ONFLAG
__ LDMODULEVERSI ONFLAGS' : " ${__li bversionflags(__env__, " LDMODULEVERSI ON', " _LDMODULEVERSI
__ SHLI BVERSI ONFLAGS' : ' ${__|i bversionflags(__env__,"SHLI BVERSI ON', " _SHLI BVERS| ONFLAGS")

__lib_either_version_flag' : <function _ lib _either_version flag at 0x700000>,
__libversionflags': <function __|ibversionflags at 0x700000>,

_concat': <function _concat at 0x700000>,

_defines': <function _defines at 0x700000>,

_stripixes': <function _stripixes at 0x700000>}

scons: done readi ng SConscript files.

scons: Building targets ...

scons: ~.' is up to date

scons: done buil ding targets.

The construction environmentsin these examples have actually been restricted to just gcc and Visual C++, respectively.
In areal-life situation, the construction environments will likely contain a great many more variables. Also note that
we've massaged the example output above to make the memory address of all objects a constant 0x700000. In redlity,
you would see a different hexadecimal number for each object.

To makeit easier to see just what you're interested in, the Dunp method allows you to specify a specific construction
variable that you want to disply. For example, it's not unusual to want to verify the external environment used to
execute build commands, to make sure that the PATH and other environment variables are set up the way they should
be. Y ou can do this as follows:

env = Environment ()
print(env. Dump(' ENV' ))

Which might display the following when executed on a POSIX system:

% scons

scons: Readi ng SConscript files ...

{"PATH : '/usr/local/bin:/opt/bin:/bin:/usr/bin:/snap/bin'}
scons: done readi ng SConscript files.

scons: Building targets ...

scons: ' is up to date.

scons: done buil ding targets.

And the following when executed on a Windows system:

C.\ >scons

scons: Readi ng SConscript files ...

{ "PATH : ' C:\\ W NDOMS\ \ Syst enB2: / usr/ bi n',
" PATHEXT' : '.COM . EXE; . BAT; . C\MD
' SystenRoot': ' C\\ W NDONS' }

scons: done readi ng SConscript files.

Iy
=== SCONS 177



What Dependencies Does SCons Know About? the - -
tree Option

scons: Building targets ...
scons: ~.' is up to date.
scons: done buil ding targets.

28.3. What Dependencies Does SCons Know
About? the - -tree Option

Sometimes the best way to try to figure out what SConsis doing is simply to take alook at the dependency graph that
it constructs based on your SConscr i pt files. The- -t r ee optionwill display all or part of the SCons dependency
graphinan"ASCII art" graphical format that shows the dependency hierarchy.

For example, given the following input SConst r uct file:

env = Environment (CPPPATH = ['."])
env. Progran('prog', ['fl.c', 'f2.¢c', 'f3.¢c'])

Running SConswiththe- -t r ee=al | option yields:

% scons -Q --tree=all
cc -o fl.o-c -I. fl.c
cc -o f2.0 -c -1. f2.¢c
cc -o f3.0 -c -1. f3.¢c
cc -o prog fl.o0 f2.0 f3.0
+- .

+- SConst r uct

+fl.c

+fl.0

The tree will also be printed when the - n (no execute) option is used, which allows you to examine the dependency
graph for a configuration without actually rebuilding anything in the tree.

Iy
=== SCONS 178



What Dependencies Does SCons Know About? the - -
tree Option

By default SCons uses "ASCII art" to draw the tree. It is possible to use line-drawing characters (Unicode calls these
Box Drawing) to make anicer display. To do this, add thel i nedr awquadlifier:

% scons -Q --tree=all,linedraw
cc -o fl.o-c -1. fl.c
cc -o f2.0 -c -1. f2.¢c
cc -o f3.0 -c -1. f3.¢c
cc -o prog fl.o0 f2.0 f3.0
H#Hit#.
##SConst r uct
##f 1. c
###f 1. 0
# ##f 1. c
# ##inc. h
##f 2. c
###f 2. 0
# ##f 2. C
# ##inc. h
##f 3. C
###f 3. 0
# ##f3.cC
# ##inc. h
##i nc. h
###pr og
###f 1. 0
# ##f 1. c
# ##inc. h
###f 2. 0
# ##f 2. cC
# ##inc. h
###f 3. 0
##f 3. C
##i nc. h

The - - t r ee option only prints the dependency graph for the specified targets (or the default target(s) if none are
specified on the command line). So if you specify atarget likef 2. 0 on the command line, the - - t r ee option will
only print the dependency graph for that file:

% scons -Q --tree=all f2.0
cc -o f2.0 -c -1. f2.¢c
+f2.0

+f2.¢c

+-inc.h

This is, of course, useful for restricting the output from a very large build configuration to just a portion in which
you're interested. Multiple targets are fine, in which case atree will be printed for each specified target:

% scons -Q --tree=all fl.0 f3.0

cc -o fl.o-c -1. fl.c
+f1l.0

+fl.c

+-inc.h
cc -o f3.0 -c -1. f3.¢c
+f3.0

+f3.c

Iy
=== SCONS 179



What Dependencies Does SCons Know About? the - -
tree Option

+-inc.h
The st at us argument may be used to tell SConsto print status information about each file in the dependency graph:

% scons -Q --tree=status

cc -ofl.o-c -1. fl.c
cc -o f2.0 -c -1. f2.c
cc -o f3.0-c -1. f3.c
cc -o prog fl.o0 f2.0 f3.0
E = exists
R = exists in repository only
b = inplicit builder
B = explicit builder
S = side effect
P = precious
A = al ways build
C = current
N = no clean
H = no cache
[ED ] +-.
[E C ] +-SConstruct
[E C ] +fl.c
[EB C ] +fl.o
[E C ] | +fl.c
[E C ] | +inc.h
[E C ] +f2.c
[EB C ] +f2.o0
[E C ] | +f2c
[E C ] | +inc.h
[E C ] +f3.c
[EB C ] +f3.0
[E C ] | +f3.c
[E C ] | +inc.h
[E C ] +inc.h
[EB C ] +-prog
[EB C ] +fl.o
[E C ] | +-fl.c
[E C ] | +inc.h
[EB C ] +-f2.0
[E C ] | +-f2.¢c
[E C ] | +inc.h
[EB C ] +-f3.0
[E C ] +-f3.c
[E C ] +-inc.h

Notethat - -t ree=al | , st at us isequivaent; theal | isassumed if only st at us is present. As an aternative
toal I, you can specify - - t r ee=der i ved to have SCons only print derived targets in the tree output, skipping
sourcefiles (like. ¢ and. h files):

% scons -Q --tree=derived

cc -o fl.o-c -I. fl.c
cc -o f2.0 -c -I. f2.c
cc -o f3.0 -c -I. f3.c

cc -o prog fl.o0 f2.0 f3.0

Iy
=== SCONS 180



What Dependencies Does SCons Know About? the - -
tree Option

+f1l.0
+f2.0
+f3.0
+-prog
+f1l.0
+f2.0
+f3.0

You can usethe st at us modifier withder i ved aswell:

% scons -Q --tree=derived, st at us

cc -ofl.o-c -1. fl.c
cc -o f2.0 -c -1. f2.c
cc -o f3.0 -c -1. f3.c
cc -o prog fl.o0 f2.0 f3.0
E = exists
R = exists in repository only
b = inmplicit builder
B = explicit builder
S = side effect
P = precious
A = al ways build
C = current
N = no clean
H = no cache
[EDb ]+-.
[EB C ] +-fl.o
[EB C ] +f2.0
[EB C ] +-f3.0
[EB C ] +-prog
[EB C ] +fl.0
[EB C ] +f2.0
[EB C ] +f3.0

Note that the order of the - -tree= arguments doesn't matter; - -t r ee=st at us, deri ved is completely

equivalent.

The default behavior of the - - t r ee option is to repeat all of the dependencies each time the library dependency
(or any other dependency file) is encountered in the tree. If certain target files share other target files, such as two
programs that use the same library:

env = Environment (CPPPATH = ['.'],

LIBS = ['foo0'],
LIBPATH = ['."'])

env. Library('foo', ['fl.c', '"f2.c', '"f3.c'])
env. Progran(' progl.c')
env. Progran(' prog2.c')

Then there can be alot of repetition in the - - t r ee= outpuit:

% scons -Q --tree=all

Iy
=== SCONS

181



What Dependencies Does SCons Know About? the - -

tree Option
cc -o fl.o -c -I. fl.c
cc -o f2.0 -c -I. f2.c
cc -o f3.0 -c -I. f3.c

ar rc libfoo.a fl.0 f2.0 f3.0
ranlib |ibfoo.a

cc -0 progl.o -c -I. progl.c
cc -o progl progl.o -L. -Ifoo
CC -0 prog2.0 -c -1. prog2.c
CC -0 prog2 prog2.o0 -L. -Ifoo

+- SConst r uct
+-fl.c

p

p
+-progl.c
+-inc.h

p

+

-‘ =SCONS 182



What Dependencies Does SCons Know About? the - -
tree Option

+-prog2.c

+- prog2. o
+-prog2.c
+-inc.h

In alarge configuration with many internal libraries and include files, this can very quickly lead to huge output trees.
To help make this more manageable, a pr une modifier may be added to the option list, in which case SCons will
print the name of atarget that has already been visited during the tree-printing in square brackets ([ ] ) asan indication
that the dependencies of the target file may be found by looking farther up the tree:

% scons -Q --tree=prune

cc -o fl.o-c -I. fl.c
cc -o f2.0 -c -I. f2.c
cc -o f3.0 -c -I. f3.c

ar rc libfoo.a fl.0 f2.0 f3.0
ranlib |ibfoo.a

cc -0 progl.o -c -I. progl.c
cc -o progl progl.o -L. -Ifoo
CC -0 prog2.0 -c -l1. prog2.c
CC -0 prog2 prog2.o0 -L. -Ifoo

+- SConst r uct
+-fl.c

=!=5CONS 183



How is SCons Constructing the Command Lines It
Executes? the - - debug=pr esub Option

| | +inc.h

| +-[libfoo.a]
+-progl.c

+- [ progl. o]

+- pr og2

| +-prog2.o

| | +-prog2.c
| | +inc.h

| +[libfoo.a]
+-prog2.c

+- [ prog2. o]

Likethe st at us keyword, the pr une argument by itself isequivalentto- -t ree=al | , pr une.

28.4. How is SCons Constructing the
Command Lines It Executes? the - -
debug=pr esub Option

Sometimesthe command linesthat SCons executes don't come out looking asyou expect. Inthiscaseit may beuseful to
look at the strings before SCons performs substitution on them. This can be done with the- - debug=pr esub option:

% scons -Q --debug=presub
Bui |l di ng prog.o with action:
$CC -0 PTARCET -c $CFLAGS $CCFLAGS $_CCOMCOM $SOURCES
CC -0 prog.o -c -1. prog.c
Bui |l di ng prog with action:
$SVART_LI NKCOM
CC -0 prog prog.o

28.5. Where is SCons Searching for Libraries?
the - - debug=fi ndl i bs Option

To get some insight into what library names SCons is searching for, and in which directories it is searching, Use the
- -debug=fi ndl i bs option. Given the following input SConst r uct file:

env = Environment (LIBPATH = ['libs1', 'libs2'])
env. Program(' prog.c', LIBS=['foo', 'bar'])

Andthelibraries| i bf 0o. aandl i bbar. ainli bslandli bs2, respectively, useof the- - debug=fi ndl i bs
option yields:

% scons -Q --debug=findlibs

findlibs: |looking for 'libfoo.a" in 'libsl
findlibs: ... FOUND 'libfoo.a" in 'libsl
findlibs: |ooking for 'libfoo.so" in 'libsl
findlibs: |ooking for 'libfoo.so" in 'libs2
S

'—‘-' SCONS 184



Whereis SCons Blowing Up?the - -
debug=st acktrace Option

findlibs: looking for '"libbar.a" in 'libsl
findlibs: looking for '"libbar.a" in 'libs2
findlibs: ... FOUND 'libbar.a" in 'libs2
findlibs: looking for '"libbar.so" in 'libsl
findlibs: |ooking for "libbar.so" in 'libs2
CC -0 prog.o -c prog.c
CC -0 prog prog.o -LIibsl -LIibs2 -1foo -I bar

28.6. Where is SCons Blowing Up? the - -
debug=st ackt r ace Option

Ingeneral, SConstriesto keepits error messages short and informative. That meansweusually try to avoid showing the
stack traces that are familiar to experienced Python programmers, since they usually contain much more information
than is useful to most people.

For example, the following SConst r uct file:

Progran(' prog.c')

Generates the following error if the pr og. ¢ file does not exist:

% scons -Q
scons: *** [prog.o] Source “prog.c' not found, needed by target " prog.o'.

Inthis case, the error is pretty obvious. But if it weren't, and you wanted to try to get more information about the error,
the - - debug=st ackt r ace option would show you exactly where in the SCons source code the problem occurs:

% scons -Q --debug=st acktrace
scons: *** [prog.o] Source "prog.c' not found, needed by target "prog.o'.
scons: internal stack trace:

Fil e "SCons/ Taskmast er/Job. py", line 219, in start
t ask. prepare()
File "SCons/ Script/Min.py", |line 180, in prepare
return SCons. Taskmast er. Qut Of Dat eTask. prepare(sel f)
File "SCons/ Taskmaster/ __init__.py", line 195, in prepare
execut or. prepare()
Fil e "SCons/ Executor.py", line 418, in prepare

rai se SCons. Errors. StopError(nmsg % (s, self.batches[O].targets[0]))

Of course, if you do need to dive into the SCons source code, we'd like to know if, or how, the error messages or
troubleshooting options could have been improved to avoid that. Not everyone has the necessary time or Python skill
to diveinto the source code, and we'd like to improve SCons for those people as well...

28.7. How is SCons Making Its Decisions? the
--taskmast ertrace Option

The internal SCons subsystem that handles walking the dependency graph and controls the decision-making about
what to rebuild is the Taskmaster. SCons supports a - -t asknast ert r ace option that tells the Taskmaster to
print information about the children (dependencies) of the various Nodes on its walk down the graph, which specific
dependent Nodes are being evaluated, and in what order.

Iy
=== SCONS 185



How is SCons Making Its Decisions? the - -
taskmast ertrace Option

The- -t askmast ert r ace option takes as an argument the name of afile in which to put the trace output, with -
(asingle hyphen) indicating that the trace messages should be printed to the standard output:

env = Environment (CPPPATH = ['."])
env. Progran(' prog.c')

% scons -Q --taskmastertrace=- prog

Taskmast er: Looking for a node to eval uate

Taskmast er: Consi deri ng node <no_state 0 "prog' > and its children
Taskmast er: <no_state 0 ' prog. o' >

Taskmast er: adjusted ref count: <pending 1 ‘prog' >, child '"prog.o
Taskmast er: Consi deri ng node <no_state 0 "prog.o' > and its children
Taskmast er: <no_state 0 ' prog.c' >

Taskmast er: <no_state 0 "“inc.h >

Taskmast er : adjusted ref count: <pending 1 ‘prog.o' >, child 'prog.c
Taskmast er : adjusted ref count: <pending 2 "prog.o' >, child '"inc.h'
Taskmast er : Consi deri ng node <no_state 0 "prog.c'> and its children
Taskmast er: Eval uating <pendi ng 0 'prog.c' >

Task. make _ready_current(): node <pendi ng 0 'prog.c' >

Task. prepare(): node <up_to_date 0O 'prog.c' >

Task. executed_wi th_cal | backs(): node <up_to_date O 'prog.c' >

Task. post process(): node <up_to_date O 'prog.c' >

Task. post process(): renmoving <up_to_date 0O 'prog.c' >

Task. post process(): adjusted parent ref count <pendi ng 1 ' prog. o' >

Taskmast er: Looking for a node to eval uate

Taskmast er : Consi deri ng node <no_state 0 ‘inc.h'> and its children
Taskmast er: Eval uating <pendi ng 0 "“inc.h >

Task. make _ready_current(): node <pendi ng 0 "“inc.h >

Task. prepare(): node <up_to_date 0O "“inc.h >

Task. executed_wi th_cal | backs(): node <up_to_date O "“inc.h >

Task. post process(): node <up_to_date O "“inc.h >

Task. post process(): renmoving <up_to_date O "“inc.h >

Task. post process(): adjusted parent ref count <pendi ng 0 ' prog. o' >

Taskmast er: Looking for a node to eval uate

Taskmast er : Consi deri ng node <pendi ng 0 "prog.o' > and its children
Taskmast er : <up_to_date O 'prog.c' >

Taskmast er: <up_to_date O "“inc.h >

Taskmast er: Eval uati ng <pendi ng 0 ' prog. o' >

Task. make _ready_current(): node <pendi ng 0 ' prog. o' >

Task. prepare(): node <executing O ' prog. o' >

Task. execut e() : node <executing O ' prog. o' >

CC -0 prog.o -c -1. prog.c

Task. executed_wi th_cal | backs(): node <executing O ' prog. o' >

Task. post process(): node <execut ed 0 ' prog. o' >

Task. post process(): renovi ng <executed 0 ' prog. o' >

Task. post process(): adjusted parent ref count <pendi ng 0 'prog' >

Iy
=== SCONS 186



Watch SCons prepare targets for building: the - -
debug=pr epar e Option

Taskmast er: Looking for a node to eval uate

Taskmast er : Consi deri ng node <pendi ng 0 "prog' > and its children
Taskmast er : <execut ed 0 'prog. o' >

Taskmast er: Eval uating <pendi ng 0 ' prog' >

Task. make _ready_current(): node <pendi ng 0 ' prog' >

Task. prepare(): node <executing O ' prog' >

Task. execute() : node <executing O ' prog' >

CC -0 prog prog.o

Task. executed_wi th_cal | backs(): node <executing O ' prog' >

Task. post process(): node <executed 0 ' prog' >

Taskmast er: Looking for a node to eval uate
Taskmast er: No candi dat e anynore.

The - -t askmast er t r ace option doesn't provide information about the actual calculations involved in deciding
if afileis up-to-date, but it does show all of the dependencies it knows about for each Node, and the order in which
those dependencies are evaluated. This can be useful as an aternate way to determine whether or not your SCons
configuration, or the implicit dependency scan, has actually identified all the correct dependencies you want it to.

28.8. Watch SCons prepare targets for
building: the - - debug=pr epar e Option

Sometimes SCons doesn't build the target you want and it's difficult to figure out why. You can use the - -
debug=pr epar e option to see all the targets SCons is considering, and whether they are already up-to-date or not.
The message is printed before SCons decides whether to build the target.

28.9. Why is afile disappearing? the - -
debug=dupl i cat e Option

When using the Dupl i cat e option to create variant dirs, sometimes you may find files not getting linked or copied
to where you expect (or not at all), or files mysteriously disappearing. These are usually because of amisconfiguration
of some kind in the SConscript files, but they can be tricky to debug. The - - debug=dupl i cat e option shows
each time avariant file is unlinked and relinked from its source (or copied, depending on settings), and also shows a
message for removing "stale" variant-dir files that no longer have a corresponding source file. It also prints aline for
each target that's removed just before building, since that can also be mistaken for the same thing.

28.10. Keep it simple

Over the years, many developers have chosen to dive in and make vastly complicated build systems out of SCons,
which sometimes don't work quite as expected. As a general rule, make sure you need to reach for acomplex solution
before you do so. SConsis mature software and has evolved over timeto meet alot of feature requests, so thereis often
an easier way to do something if you canjust find it. The SCons community can be hel pful here- thediscussion listsand
chat channels can be away to find out if something can be done an easier way before embarking on an implementation.

When something does mishehave, trying to isolate the problem to asimple test case can really help. The work to create
areproducer often helps you spot the issue yourself, and a simple example is much easier for others to look over and
possibly spot logical flaws, misuse of the API, or other ways something could have been done. In addition, if it turns

Iy
=== SCONS 187



Keep it smple

out there's actually areal SCons bug (we believeit's ahigh quality piece of software, but all software has some bugs),
it'svery likely the bug filing will result in arequest for a simple reproducer anyway.

Iy
=== SCONS 188



Appendix A. Construction Variables

This appendix contains descriptions of all of the construction variables that are potentially available "out of the box"
in this version of SCons. Whether or not setting a construction variable in a construction environment will actually
have an effect depends on whether any of the Tools and/or Builders that use the variable have been included in the
construction environment.

In this appendix, we have appended the initial $ (dollar sign) to the beginning of each variable name when it appears
in the text, but left off the dollar sign in the left-hand column where the name appears for each entry.

___LDMODULEVERSI ONFLAGS
This construction variable automatically introduces $_ L DMODUL EVERSI ONFLAGS if $LDMODULEVERSI ON
is set. Othervise it evaluates to an empty string.

__SHLI BVERSI ONFLAGS

This construction variable automatically introduces $_SHLI BVERSI ONFLAGS if $SHLI BVERSI ON is set.
Othervise it evaluates to an empty string.

APPLEL| NK_COWVPATI BI LI TY_VERSI ON
On Mac OS X thisis used to set the linker flag: -compatibility_version

The valueis specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be derived from $SHLI BVERSI ON if not specified. The
lowest digit will be dropped and replaced by a 0.

If the SAPPLELI NK_NO_COWPATI BI LI TY_VERSI ONis set then no -compatibility_version will be outpuit.
See MacOS's |d manpage for more details

_APPLELI NK_COWPATI BI LI TY_VERSI ON
A macro (by default a generator function) used to create the linker flags to specify apple's linker's -
compatibility_version flag. The default generator uses $APPLELI NK_COWPATI Bl LI TY_VERSI ON and
$APPLELI NK_NO COVPATI BI LI TY_VERSI ONand $SHLI BVERSI ON to determine the correct flag.

APPLEL| NK_CURRENT_VERSI ON
On Mac OS X thisisused to set the linker flag: -current_version

The valueis specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be set to $SHLI BVERSI ONif not specified.

If the SAPPLELI NK_NO_CURRENT_VERSI ONis set then no -current_version will be output.
See MacOS's |d manpage for more details

_APPLELI NK_CURRENT_VERSI ON
A macro (by default a generator function) used to create the linker flags to specify apple's
linker's -current_version flag. The default generator uses $APPLELI NK_CURRENT_VERSI ON and
$APPLEL| NK_NO_CURRENT_VERS| ONand $SHLI BVERSI ON to determine the correct flag.

APPLELI NK_NO_COWVPATI BI LI TY_VERSI ON
Set thisto any True (1|Truelnon-empty string) val ueto disable adding -compatibility version flag when generating
versioned shared libraries.

This overrides SAPPLEL| NK_COMPATI BI LI TY_VERSI ON.

Iy
=== SCONS 189



APPLELI NK_NO_CURRENT_VERSI ON
Set this to any True (1|Truelnon-empty string) value to disable adding -current_version flag when generating
versioned shared libraries.

This overrides SAPPLEL| NK_CURRENT_VERS| ON.

AR
The static library archiver.

ARCHI TECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SConsisrunning. Thisisused tofill inthe Ar chi t ect ur e: fieldinanlIpkgcontr ol
file, and the Bui | dAr ch: field in the RPM . spec file, as well as forming part of the name of a generated
RPM packagefile.

Seethe Package builder.

ARCOM
The command line used to generate a static library from object files.

ARCOVETR
The string displayed when a static library is generated from object files. If this is not set, then $ARCOM (the
command line) is displayed.

env = Environnment (ARCOVSTR = "Archivi ng $TARGET")

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language source file.

ASCOVSTR
The string displayed when an object file is generated from an assembly-language source file. If thisis not set,
then $ASCOM (the command line) is displayed.

env = Environnment (ASCOMSTR = "Assenbl i ng $TARCGET")

ASFLAGS
General options passed to the assembler.

ASPPCOM
The command line used to assembl e an assembly-language sourcefileinto an object file after first running thefile
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
areincluded on this command line.

ASPPCOVSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If thisis not set, then $ASPPCOM (the command line) is displayed.

Iy
=== SCONS 190



env = Environnment (ASPPCOVSTR = "Assenbl i ng $TARGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

Bl BTEX
Thebibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

Bl BTEXCOM

The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

Bl BTEXCOMSTR

The string displayed when generating a bibliography for TeX or LaTeX. If thisis not set, then $Bl BTEXCOM
(the command line) is displayed.

env = Environnent ( Bl BTEXCOVBTR = "CGenerating bi bl i ography $TARGET")

Bl BTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BUI LDERS
A dictionary mapping the names of the builders available through the construction environment to underlying
Builder objects. Custom builders need to be added to this to make them available.

A platform-dependent default list of builders such as Program Li brary etc. is used to populate this
construction variable when the construction environment is initialized via the presence/absence of the tools those
builders depend on. $BUI LDERS can be examined to learn which builders will actually be available at run-time.

Note that if you initialize this construction variable through assignment when the construction environment is
created, that value for $BUI LDERS will override any defaults:

bl d
env

Bui | der (acti on=' foobuild < $SOURCE > $TARGET')
Envi ronment ( BUl LDERS={' NewBui | der': bl d})

To instead use a new Builder object in addition to the default Builders, add your new Builder object like this:

env = Environment ()
env. Append( BUl LDERS={' NewBui | der': bl d})

or this:

env = Environnent ()
env[' BU LDERS ][' NewBuil der'] = bld

CACHEDI R_CLASS
The class type that SCons should use when instantiating anew CacheDbi r for the given environment. It must be
a subclass of the SCons.CacheDir.CacheDir class.

CcC
The C compiler.

Iy
=== SCONS 191



CCccom
The command line used to compile a C sourcefile to a(static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCCCOM
for compiling to shared objects.

CCCOVBTR
If set, the string displayed when a C source file is compiled to a (static) object file. If not set, then $CCCOM (the
command line) is displayed. See a'so $SHCCCOMSTR for compiling to shared objects.

env = Environnent (CCCOVBTR = "Conpi |l i ng static object $TARGET")

CCDEPFLAGS
Optionsto passto C or C++ compiler to generate list of dependency files.

Thisis set only by compilers which support this functionality. (gcc, cl ang, and nsvc currently)

CCFLAGS
General options that are passed to the C and C++ compilers. See also $SHCCFLAGS for compiling to shared
objects.

CCPCHFLAGS
Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction
variableis set.

CCPDBFLAGS
Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variable is set.

The Visual C++ compiler option that SCons uses by default to generate PDB information is/ Z7. This works
correctly with parallée (- ) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is aso the only way to get debug
information embedded into a static library. Using the / Zi instead may yield improved link-time performance,
although parallel builds will no longer work.

Y ou can generate PDB fileswith the/ Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%" % File(PDB)) or ""}']

An dternative would be to usethe/ Zi to put the debugging information in a separate . pdb file for each object
file by overriding the $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS' | = '/Zi /Fd${TARGET}. pdb'

CCVERSI ON
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFl LESUFFI X
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.I)
or YACC (.y) input files. The default suffix, of course, is. ¢ (lower case). On case-insensitive systems (like
Windows), SCons also treats. C (upper case) filesas C files.

Iy
=== SCONS 192



CFLAGS
General options that are passed to the C compiler (C only; not C++). See also $SHCFLAGS for compiling to
shared objects.

CHANGE_SPECFI LE
A hook for modifying the file that controls the packaging build (the . spec for RPM, thecont r ol for Ipkg, the
. wxs for MSl). If set, the function will be called after the SCons template for the file has been written.

See the Package builder.

CHANCED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Subgtitution" for more information).

CHANGED TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGEL GG
The name of a file containing the change log text to be included in the package. This is included as the
% hangel og section of the RPM . spec file.

See the Package builder.

COVPI LATI ONDB_COMSTR
The string displayed when the Conpi | at i onDat abase builder's actionisrun.

COVPI LATI ONDB_PATH_FI LTER
A string which instructs Conpi | at i onDat abase to only include entrieswherethe out put member matches
the pattern in the filter string using fnmatch, which uses glob style wildcards.

The default value is an empty string ", which disables filtering.

COWVPI LATI ONDB_USE_ABSPATH
A boolean flag to instruct Conpi | at i onDat abase whether to writethef i | e and out put membersin the
compilation database using absolute or relative paths.

The default value is False (use relative paths)

concat

A function used to produce variables like $_CPPI NCFLAGS. It takes four mandatory arguments, and up to 4
additional optional arguments: 1) a prefix to concatenate onto each element, 2) alist of elements, 3) a suffix to
concatenate onto each element, 4) an environment for variable interpolation, 5) an optional function that will
be called to transform the list before concatenation, 6) an optionally specified target (Can use TARGET), 7) an
optionally specified source (Can use SOURCE), 8) optional af f ect _si gnat ur e flag which will wrap non-
empty returned value with $( and $) to indicate the contents should not affect the signature of the generated
command line.

env[' CPPI NCFLAGS' ] = '${ concat (| NCPREFI X, CPPPATH, |INCSUFFI X, env__, RDirs,

CONFI GUREDI R
The name of the directory in which Configure context test files are written. The defaultis. sconf _t enp inthe
top-level directory containing the SConst r uct file.

Iy
=== SCONS 193



CONFI GURELOG
The name of the Conf i gur e context log file. Thedefaultisconfi g. | og inthetop-level directory containing
the SConst r uct file.

_ CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. Thevalueof $ CPPDEFFLAGS iscreated by respectively prepending and appending $CPPDEFPREFI X
and $CPPDEFSUFFI X to each definition in $CPPDEFI NES.

CPPDEFI NES
A platform independent specification of C preprocessor macro definitions. The definitions are added to command
lines through the automatically-generated $_CPPDEFFLAGS construction variable, which is constructed
according to the contents of $CPPDEFI NES:

 If $CPPDEFI NES is a string, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction
variables are respectively prepended and appended to each definition in SCPPDEFI NES, split on whitespace.

# Adds -Dxyz to PCSI X conpil er command |i nes,
# and /Dxyz to Mcrosoft Visual C++ command |i nes.
env = Environnment ( CPPDEFI NES=' xyz')

 |If $CPPDEFI NESisalist, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction variables
are respectively prepended and appended to each element in the list. If any element is a tuple (or list) then
the first item of the tuple is the macro name and the second is the macro definition. If the definition is not
omitted or None, the name and definition are combined into a single nane=def i ni ti on item before the
preending/appending.

# Adds -DB=2 -DA to POSI X conpil er command | i nes,
# and /DB=2 /DA to M crosoft Visual C++ command |i nes.
env = Environnment (CPPDEFINES=[ (' B, 2), 'A'])

* If $CPPDEFI NES is a dictionary, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction
variables are respectively prepended and appended to each key from the dictionary. If the value for a key
is not None, then the key (macro name) and the value (macros definition) are combined into a single
nane=def i ni ti on item before the prepending/appending.

# Adds -DA -DB=2 to POSI X conpil er command | i nes,
# or /DA /DB=2 to Mcrosoft Visual C++ command |i nes.
env = Envi ronnent (CPPDEFI NES={' B' : 2, ' A" : None})

Depending on how contents are added to $CPPDEFI NES, it may be transformed into a compound type, for
example alist containing strings, tuples and/or dictionaries. SCons can correctly expand such a compound type.

Note that SCons may call the compiler viaa shell. If a macro definition contains characters such as spaces that
have meaning to the shell, or is intended to be a string value, you may need to use the shell's quoting syntax to
avoid interpretation by the shell before the preprocessor sees it. Function-like macros are not supported via this
mechanism (and some compilers do not even implement that functionality viathe command lines). When quoting,
note that one set of quote characters are used to define a Python string, then quotes embedded inside that would
be consumed by the shell unless escaped. These examples may help illustrate:

env = Environnment (CPPDEFI NES=[' USE_ALT HEADER=\\"foo_alt.h\\"'])

Iy
=== SCONS 194



env = Environment (CPPDEFI NES=[ (' USE_ALT HEADER , "\\"foo_ alt.h\\"")])

:Changed in version 4.5: SCons no longer sorts $CPPDEFI NES values entered in dictionary form. Python now
preserves dictionary keysin the order they are entered, so it is no longer necessary to sort them to ensure a stable
command line.

CPPDEFPREFI X
The prefix used to specify preprocessor macro definitions on the C compiler command line. This will be
prepended to each definition in the SCPPDEFI NES construction variable when the $  CPPDEFFLAGS variable
isautomatically generated.

CPPDEFSUFFI X
The suffix used to specify preprocessor macro definitions on the C compiler command line. This will be
appended to each definition in the $CPPDEFI NES construction variable when the $  CPPDEFFLAGS variable
isautomatically generated.

CPPFLAGS

User-specified C preprocessor options. These will be included in any command that uses the C preprocessor,
including not just compilation of C and C++ source files via the $CCCOM $SHCCCOM $CXXCOM and
$SHCXXCOM command lines, but also the $FORTRANPPCOM $SHFORTRANPPCOM $F77PPCOM and
$SHF77PPCOMcommand lines used to compile a Fortran source file, and the $ASPPCOM command line used
to assemble an assembly language source file, after first running each file through the C preprocessor. Note that
this variable does not contain - | (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_ CPPI NCFLAGS, below, for the variable that expands to those options.

_CPPI NCFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options for
specifying directories to be searched for include files. The value of $_CPPI NCFLAGS is created by respectively
prepending and appending $| NCPREFI X and $1 NCSUFFI X to each directory in $CPPPATH.

CPPPATH
Thelist of directoriesthat the C preprocessor will search for include directories. The C/C++ implicit dependency
scanner will search these directoriesfor includefiles. In general it's not advised to put include directory directives
directly into SCCFLAGS or $CXXFLAGS astheresult will be non-portable and the directorieswill not be searched
by the dependency scanner. $CPPPATH should be a list of path strings, or a single string, not a pathname list
joined by Python'sos. sep.

Note: directory namesin $CPPPATH will be looked-up relative to the directory of the SConscript file when they
are used inacommand. To force sconsto look-up adirectory relativeto theroot of the source tree use the# prefix:

env = Environnent (CPPPATH=" #/ i ncl ude')

The directory look-up can also be forced using the Di r function:

include = Dir('include')

env = Environment (CPPPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_CPPI NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the

$I NCPREFI X and $1 NCSUFFI X construction variables to each directory in $CPPPATH. Any command lines
you define that need the $CPPPATH directory list should include $_CPPI NCFLAGS:

Iy
=== SCONS 195



env = Environnent (CCCOVE"ny_conpi | er $_CPPI NCFLAGS -c -0 $TARGET $SOURCE")

CPPSUFFI XES
The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default listis:

[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",
“.h", ".H, ".hxx", ".hpp", ".hh",
“.F, ".fpp", ".FPP",
".S", ".spp", ".SPP"]

CXX
The C++ compiler. See aso $SHCXX for compiling to shared objects..

CXXCom
The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS
and $CPPFLAGS construction variables are included on this command line. See aso $SHCXXCOMfor compiling
to shared objects..

CXXCOVBTR
If set, the string displayed when a C++ source file is compiled to a (static) object file. If not set, then $CXXCOM
(the command line) is displayed. See al'so $SHCXXCOMSTR for compiling to shared objects..

env = Environnment (CXXCOVSTR = "Conpi ling static object $TARGET")

CXXFI LESUFFI X
The suffix for C++ sourcefiles. Thisisused by theinternal CXXFile builder when generating C++ filesfrom Lex
(1) or YACC (.yy) input files. The default suffix is. cc. SCons also treats files with the suffixes . cpp, . cxXx,
. c++, and . C++ as C++ files, and files with . mm suffixes as Objective C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats . C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS. See also $SHCXXFLAGS for compiling to shared objects..

CXXVERSI ON
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
The D compiler to use. See also $SHDC for compiling to shared objects.

DCOM
The command line used to compile aD file to an object file. Any options specified in the $DFLAGS construction
variable isincluded on this command line. See also $SHDCOM(for compiling to shared objects.

DCOVSTR
If set, the string displayed when a D source file is compiled to a (static) object file. If not set, then $DCOM (the
command line) is displayed. See also $SHDCOMSTR for compiling to shared objects.

DDEBUG
List of debug tags to enable when compiling.

Iy
=== SCONS 196



DDEBUGPREFI X
DDEBUGPREFIX.

DDEBUGSUFFI X
DDEBUGSUFFIX.

DESCRI PTI ON
A long description of the project being packaged. Thisisincluded in the relevant section of the file that controls
the packaging build.

See the Package builder.

DESCRI PTI ON_| ang
A language-specific long description for the specified | ang. Thisis used to populate a %descri ption -1
section of an RPM . spec file.

See the Package builder.

DFI LESUFFI X
DFILESUFFIX.

DFLAGPREFI X
DFLAGPREFIX.

DFLAGS
General options that are passed to the D compiler.

DFLAGSUFFI X
DFLAGSUFFIX.

DI NCPREFI X
DINCPREFIX.

DI NCSUFFI X
DLIBFLAGSUFFIX.
Dir
A function that converts a string into a Dir instance relative to the target being built.
Dirs
A function that converts alist of stringsinto alist of Dir instances relative to the target being built.

DLI B
Name of thelib tool to use for D codes.

DLI BCOM
The command line to use when creating libraries.

DLI BDI RPREFI X
DLIBLINKPREFIX.

DLI BDI RSUFFI X
DLIBLINKSUFFIX.

DLI BFLAGPREFI X
DLIBFLAGPREFIX.

Iy
=== SCONS 197



DLI BFLAGSUFFI X
DLIBFLAGSUFFIX.

DLI BLI NKPREFI X
DLIBLINKPREFIX.

DLI BLI NKSUFFI X
DLIBLINKSUFFIX.

DLI NK
Name of thelinker to usefor linking systemsincluding D sources. Seealso $SHDLI NK for linking shared objects.

DLI NKCOM
The command line to use when linking systems including D sources. See also $SHDLI NKCOMfor linking shared
objects.

DLI NKFLAGPREFI X
DLINKFLAGPREFIX.

DLI NKFLAGS
List of linker flags. See d'so $SHDLI NKFLAGS for linking shared objects.

DLI NKFLAGSUFFI X
DLINKFLAGSUFFIX.

DOCBOCOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTM.
The default XSLT file for the DocbookHt m  builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK _DEFAULT_XSL_HTM.CHUNKED
Thedefault XSLT filefor theDocbookHt M Chunked builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHt m hel p builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK _DEFAULT_XSL_SLI DESHTM.
Thedefault XSLT filefor the Docbook Sl i desHt ml builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK _DEFAULT_XSL_SL| DESPDF
The default XSLT file for the DocbookS| i desPdf builder within the current environment, if no other XSLT
gets specified via keyword.

Iy
=== SCONS 198



DOCBOOK_FOP
The path to the PDF renderer f op or xep, if one of themisinstalled (f op gets checked first).

DOCBOOK_FOPCOM
The full command-line for the PDF renderer f op or xep.

DOCBOOK_FOPCOMSTR
The string displayed when arenderer likef op or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additonal command-line flags for the PDF renderer f op or xep.

DOCBOOK_XMLLI NT
The path to the external executable xm | i nt , if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no Ixml Python binding can be imported in the current system.

DOCBOOK_XM_LI NTCOM
The full command-line for the external executable xm | i nt .

DOCBOOK_XM_LI NTCOVSTR
The string displayed when xmi | i nt isused to resolve XIncludes for agiven XML file.

DOCBOOK_XM_LI NTFLAGS
Additonal command-line flags for the external executablexm | i nt .

DOCBOOK_XSLTPRCC
The path to the external executable xsl t pr oc (or saxon, xal an), if one of them isinstalled. Note, that this
isonly used as last fallback for XSL transformations, if no Ixml Python binding can be imported in the current
system.

DOCBOOK_XSLTPROCCOM
The full command-line for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCCOVSTR
The string displayed when xs| t pr oc isused to transform an XML fileviaagiven XSLT stylesheet.

DOCBOOK_XSLTPROCFLAGS
Additonal command-line flags for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCPARANS
Additonal parameters that are not intended for the XSLT processor executable, but the XSL processing itself. By
default, they get appended at the end of the command line for saxon and saxon- xsl t , respectively.

DPATH
List of pathsto search for import modules.

DRPATHPREFI X
DRPATHPREFIX.

DRPATHSUFFI X
DRPATHSUFFIX.

DSUFFI XES
Thelist of suffixes of filesthat will be scanned for imported D package files. The default listis['.d'].

DVERPREFI X
DVERPREFIX.

Iy
=== SCONS 199



DVERSI ONS
List of version tags to enable when compiling.

DVERSUFFI X
DVERSUFFIX.

DVI PDF
The TeX DVI file to PDF file converter.

DVI PDFCOM
The command line used to convert TeX DVI filesinto a PDF file.

DVI PDFCOVBTR
The string displayed when aTeX DVI fileis converted into a PDF file. If thisis not set, then $DVI PDFCOM(the
command line) is displayed.

DVI PDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVI PS
The TeX DVI file to PostScript converter.

DVI PSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
The execution environment - adictionary of environment variables used when SConsinvokes external commands
to build targets defined in this construction environment. When $ENV is passed to a command, all list values are
assumed to be path lists and are joined using the search path separator. Any other non-string values are coerced
to a string.

Note that by default SCons does not propagate the environment in effect when you execute scons (the "shell
environment") to the execution environment. Thisis so that buildswill be guaranteed repeatable regardless of the
environment variables set at the time scons is invoked. If you want to propagate a shell environment variable to
the commands executed to build target files, you must do so explicitly. A common example is the system PATH
environment variable, so that sconswill find utilities the same way as the invoking shell (or other process):

i mport os
env = Environment (ENV={' PATH : os.environ[' PATH ]})

Although it isusually not recommended, you can propagate the entire shell environment in one go:

i mport os
env = Environment ( ENV=0s. envi ron. copy())

ESCAPE
A function that will be called to escape shell special charactersin command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

FO03
The Fortran 03 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

Iy
=== SCONS 200



FO3COoM
The command line used to compile a Fortran 03 sourcefileto an object file. Y ou only need to set $FO3COMif you
need to use a specific command line for Fortran 03 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FO3COMBTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file. If not set, then $F03COM
or $FORTRANCOM (the command line) is displayed.

FO3FI LESUFFI XES
Thelist of file extensions for which the FO3 dialect will be used. By default, thisis[ ' . f 03" ]

FO3FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO3PATH. See
$_FO03I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO3FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_F03Il NCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F031 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO3PATH.

FO3PATH

The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO3FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO3PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $FO3PATH if you need to define a specific include path for Fortran 03 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environnment (FO3PATH=' #/i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Envi ronnment ( FO3PATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_FO31 NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $FO3PATH. Any command lines you define
that need the FO3PATH directory list should include $_FO03I NCFLAGS:

env = Environment (FO3COVE"ny_conpi |l er $_FO3I NCFLAGS -c¢ -0 $TARCGET $SOURCE")

FO3PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO3FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $FO3PPCOMif you need to use a specific C-preprocessor command
line for Fortran 03 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

Iy
=== SCONS 201



FO3PPCOVBTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $FO03PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO3PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FO3 dialect will be used. By defaullt,
thisis empty.

FO08
The Fortran 08 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

FO8COM
The command line used to compile aFortran 08 sourcefileto an object file. Y ou only need to set $F08 COMIif you
need to use a specific command line for Fortran 08 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

FO8COVSTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file. If not set, then $FO8COM
or $FORTRANCOM (the command line) is displayed.

FO8FI LESUFFI XES
Thelist of file extensions for which the FO8 dialect will be used. By default, thisis[ ' . f 08" ]

FOBFLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO8PATH. See
$_FO8I NCFLAGS below, for the variable that expands to those options. Y ou only need to set SFO8FLAGS if
you need to define specific user options for Fortran 08 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F08I NCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F08I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO8PATH.

FO8PATH

The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO8FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO8PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relative to the root of the sourcetree use#: Y ou only
need to set $FO8PATH if you need to define a specific include path for Fortran 08 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FOBPATH=" #/i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environment ( FOBPATH=i ncl ude)

Iy
=== SCONS 202



The directory list will be added to command lines through the automatically-generated $ FO81 NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in SFO8PATH. Any command lines you define
that need the FOBPATH directory list should include $_F08I NCFLAGS:

env = Envi ronnent (FO8COVE"my_conpi | er $_FO08I NCFLAGS -c -0 $TARGET $SOURCE")

FO8PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO8FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $FO8PPCOMif you need to use a specific C-preprocessor command
line for Fortran 08 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO8PPCOVBTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $FO8 PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO8PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FO8 dialect will be used. By default,
thisis empty.

F77
The Fortran 77 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

F77CoM
The command line used to compile aFortran 77 sourcefile to an object file. Y ou only need to set $F77 COMif you
need to use a specific command line for Fortran 77 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for all Fortran versions.

F77COVBTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file. If not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77FI LESUFFI XES
Thelist of file extensions for which the F77 dialect will be used. By default, thisis[ ' . f 77" ]

F77FLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F771 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_F771 NCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F771 NCFLAGS is created by appending
$1 NCPREFI X and $I NCSUFFI X to the beginning and end of each directory in $F77PATH.

F77PATH
The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they

Iy
=== SCONS 203



are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $F77PATH if you need to define a specific include path for Fortran 77 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (F77PATH=" #/i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (F77PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ F771 NCFLAGS
construction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $F77PATH. Any command lines you define
that need the F77PATH directory list should include $_F771 NCFLAGS:

env = Environnent (F77COVE" my_conpi l er $_F771 NCFLAGS -c -0 $TARGET $SOURCE")

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F77PPCOMif you need to use a specific C-preprocessor command
line for Fortran 77 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOVBTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F77PPCOMor $FORTRANPPCOM (the command line) is displayed.

F77PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default,
thisis empty.

F90
The Fortran 90 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. Y ou only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

FOOCOM
The command line used to compile aFortran 90 sourcefile to an object file. Y ou only need to set $F90COMIf you
need to use a specific command line for Fortran 90 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

F9O0COVSTR
If set, the string displayed when a Fortran 90 source file is compiled to an object file. If not set, then $F90COM
or $FORTRANCOM (the command line) is displayed.

FOOFI LESUFFI XES
Thelist of file extensions for which the FO0 dialect will be used. By default, thisis[ ' . f 90" ]

FOOFLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F90PATH. See

Iy
=== SCONS 204



$_F90l NCFLAGS below, for the variable that expands to those options. Y ou only need to set SFOOFLAGS if
you need to define specific user options for Fortran 90 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_F90l NCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F901 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F90OPATH.

FOOPATH

The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI0FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $F9OPATH if you need to define a specific include path for Fortran 90 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FOOPATH=' #/ i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (FOOPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_F901 NCFLAGS
construction variable, which is constructed by appending the values of the $| NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $FO0OPATH. Any command lines you define
that need the FOOPATH directory list should include $_F90I NCFLAGS:

env = Environnent (FOOCOM-"ny_conpi | er $_F90I NCFLAGS -c -0 $TARGET $SOURCE")

FOOPPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F90PPCOMif you need to use a specific C-preprocessor command
line for Fortran 90 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F9OPPCOVETR
If set, the string displayed when a Fortran 90 source file is compiled after first running the file through the C
preprocessor. If not set, then $F90PPCOMor $FORTRANPPCOM (the command line) is displayed.

FOOPPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By defaullt,
thisis empty.

F95
The Fortran 95 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

Iy
=== SCONS 205



F95COoM
The command line used to compile a Fortran 95 sourcefileto an object file. Y ou only need to set $F95COMif you
need to use a specific command line for Fortran 95 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FO5COMBTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file. If not set, then $F95COM
or $FORTRANCOM (the command line) is displayed.

FO95FI LESUFFI XES
Thelist of file extensions for which the F95 dialect will be used. By default, thisis[ ' . f 95" ]

FO5FLAGS
General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F951 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $F95FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the SFORTRANFLAGS
variable, which specifies the user-specified options passed to the default Fortran compiler for all Fortran versions.

_F951 NCFLAGS
An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F951 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F95PATH.

FI95PATH

The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI5FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relative to the root of the sourcetree use#: Y ou only
need to set $FO5PATH if you need to define a specific include path for Fortran 95 files. Y ou should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environnent (FO5PATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environnment ( FO95PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ F951 NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in SF95PATH. Any command lines you define
that need the FO5PATH directory list should include $_F951 NCFLAGS:

env = Envi ronnent (FO95COVE" my_conpi | er $_F95] NCFLAGS -c -0 $TARGET $SOURCE")

FO5PPCOM
The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F95PPCOMif you need to use a specific C-preprocessor command

Iy
=== SCONS 206



line for Fortran 95 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO5PPCOVBTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F95PPCOMor $FORTRANPPCOM (the command line) is displayed.

FI95PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By defaullt,
thisis empty.

File
A function that converts a string into a File instance relative to the target being built.

FI LE_ENCODI NG
File encoding used for fileswritten by Text fi | e and Subst fi | e. Set to "utf-8" by default. Added in version
45.0.

FORTRAN
The default Fortran compiler for al versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS construction variables are included
on this command line.

FORTRANCOMVONFLAGS
General user-specified options that are passed to the Fortran compiler. Similar to SFORTRANFLAGS, but this
construction variable is applied to all diaects.

New in version 4.4.

FORTRANCOMSTR
If set, the string displayed when a Fortran source file is compiled to an object file. If not set, then $FORTRANCOM
(the command line) is displayed.

FORTRANFI LESUFFI XES
The list of file extensions for which the FORTRAN dialect will be used. By default, thisis[* . f', '.for",
oftn']

FORTRANFLAGS
General user-specified options for the FORTRAN dialect that are passed to the Fortran compiler. Note that this
variabledoesnot contain - | (or similar) include or module search path options that scons generates automatically
from $FORTRANPATH. See $_ FORTRANI NCFLAGS and $_ FORTRANMODFLAGfor the construction variables
that expand those options.

_FORTRANI NCFLAGS
An automatically-generated construction variable containing the Fortran compiler command-line options for
specifying directories to be searched for include files and module files. The value of $ FORTRANI NCFLAGS is
created by respectively prepending and appending $1 NCPREFI X and $I NCSUFFI X to the beginning and end
of each directory in $FORTRANPATH.

FORTRANMODDI R
Directory location where the Fortran compiler should place any module filesit generates. This variable is empty,
by default. Some Fortran compilerswill internally append thisdirectory in the search path for modulefiles, aswell.

Iy
=== SCONS 207



FORTRANMODDI RPREFI X
The prefix used to specify amodul e directory on the Fortran compiler command line. Thiswill be prepended to the
beginning of the directory in the $FORTRANMODDI R construction variables when the $_ FORTRANMODFLAG
variablesis automatically generated.

FORTRANMODDI RSUFFI X
The suffix used to specify amodule directory on the Fortran compiler command line. Thiswill be appended to the
end of the directory in the SFORTRANMODDI R construction variableswhenthe$ FORTRANMODFLAGvariables
isautomatically generated.

_ FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for
specifying the directory location where the Fortran compiler should place any module files that happen to
get generated during compilation. The value of $ _FORTRANMODFLAG is created by respectively prepending
and appending $FORTRANMODDI RPREFI X and $FORTRANMODDI RSUFFI X to the beginning and end of the
directory in $FORTRANMODDI R.

FORTRANMODPREFI X
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for modulefiles of nodul e_nane. nod. Asaresult, thisvariableisleft empty, by
default. For situations in which the compiler does not necessarily follow the normal convention, the user may use
thisvariable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFI X
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of nrodul e_nane. nod. Asaresult, thisvariableis set to ".mod",
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
usethisvariable. Itsvalue will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH

Thelist of directoriesthat the Fortran compiler will search for include filesand (for some compilers) modulefiles.
The Fortran implicit dependency scanner will search these directories for include files (but not module files since
they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put
include directory argumentsin FORTRANFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory namesin FORTRANPATH will belooked-up relative
to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to
the root of the source tree use #:

env = Environment ( FORTRANPATH=" #/ i ncl ude' )

The directory look-up can also be forced using the Di r () function:

include = Dir('include')

env = Environnment ( FORTRANPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_ FORTRANI NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$I NCPREFI X and $I NCSUFFI X construction variables to the beginning and end of each directory in

$FORTRANPATH. Any command lines you define that need the FORTRANPATH directory list should include
$_FORTRANI NCFLAGS:

env = Environnent (FORTRANCOVE" ny_conpi | er $_FORTRANI NCFLAGS -c -0 $TARGET $SOURCE")

Iy
=== SCONS 208



FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the $FORTRANFLAGS, $CPPFLAGS, $_ CPPDEFFLAGS,
$_ FORTRANMODFLAG, and $ FORTRANI NCFLAGS construction variables are included on this command line.

FORTRANPPCOVSTR
If set, the string displayed when aFortran sourcefileis compiled to an object file after first running thefilethrough
the C preprocessor. If not set, then $FORTRANPPCOM (the command line) is displayed.

FORTRANPPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, thisis[' . fpp', '.FPP']

FORTRANSUFFI XES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

(*.f*, ".F, ".for", ".FOR', ".ftn", ".FTIN', ".fpp", ".FPP",
“frrt, t.F77", “.f90", ".F90", ".f95", ".F95"]
FRAMEWORKPATH

On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find
framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks
when linking (see $FRAMEVORKS). For example:

env. AppendUni que( FRANEWORKPATH=" #nyf r anmewor kdi r ')

will add

- Fnyf r amewor kdi r

to the compiler and linker command lines.

_ FRAMEWORKPATH
On Mac OS X with gec, an automatically-generated construction variable containing the linker command-line
options corresponding to $FRAVEWORKPATH.

FRAMEWORKPATHPREFI X
On Mac OS X with gcec, the prefix to be used for the FRAMEWORKPATH entries. (see $FRAVEWORKPATH).
The default valueis- F.

FRANVEWORKPREFI X
On Mac OS X with gec, the prefix to be used for linking in frameworks (see $FRAMEWORKS). The default value
is-framewor k.

FRAMEWORKS
On Mac OS X with gcc, alist of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

Iy
=== SCONS 209



env. AppendUni que( FRAMEWORKS=Spl i t (' Syst em Cocoa SystenmConfiguration'))

_ FRAMEWORKS
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS.

FRAMEWORKSFLAGS
On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superseded by the $FRAVEVWORKPATH,
$SFRAVEWORKPATHPREFI X, $FRAVEWORKPREFI X and $FRAMEWORKS variables described above.)

GS
The Ghostscript program used to, for example, convert PostScript to PDF files.

GSCom
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sQut put Fi | e=$TARGET $SOURCES".

GSCOMSTR
The string displayed when Ghostscript is called for the conversion process. If thisis not set (the default), then
$GSCOM (the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default valueis“- dNOPAUSE - dBATCH - sDEVI CE=pdf wri t e”

HOST_ARCH
The name of the host hardware architecture used to create this construction environment. The platform code sets
this when initializing (see $PLATFORM and the pl at f or margument to Envi r onment ). Note the detected
name of the architecture may not be identical to that returned by the Python pl at f or m machi ne method.

On the wi n32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. Changing the values at any later time will not cause the tool to be
reinitialized. Valid host arch values are x86 and ar mfor 32-bit hosts and ant64 and x86_64 for 64-hit hosts.

Should be considered immutable. $HOST_ ARCHisnot currently used by other platforms, but the optionisreserved
to do soin future

HOST_CS
The name of the host operating system for the platform used to create this construction environment. The platform
code sets this when initializing (see $PLATFORMand the pl at f or margument to Envi r onment ).

Should be considered immutable. $HOST _OS is not currently used by SCons, but the option is reserved to do
soin future

| DLSUFFI XES
The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default listis:

[".idl", ".1DL"]

| MPLI BNOVERSI ONSYMLI NKS
Used to override $SHLI BNOVERSI ONSYMLI NKS/$LDMODULENOVERSI ONSYMLI NKS when  creating
versioned import library for a shared library/loadable module. If not defined, then

Iy
=== SCONS 210



$SHLI BNOVERSI ONSYMLI NKS/$L DMODUL ENOVERSI ONSYMLI NKS isused to determinewhether to disable
symlink generation or not.

| MPLI BPREFI X
The prefix used for import library names. For example, cygwin uses import libraries (1 i bf oo. dl | . a) in
pair with dynamic libraries (cygf oo. dl |). The cygl i nk linker sets $| MPLI BPREFI X to ' Ii b' and
$SHLI BPREFI Xto' cyg' .

| MPLI BSUFFI X
The suffix used for import library names. For example, cygwin uses import libraries (I i bf oo. dl | . a) in
pair with dynamic libraries (cygf oo. dl | ). Thecygl i nk linker sets $I MPLI BSUFFI Xto' . dl | .a"' and
$SHLI BSUFFI Xto' . dl I ".

| MPLI BVERSI ON
Used to override $SHLI BVERSI ON$LDMODULEVERSI ON when generating versioned import library for a
shared library/loadable module. If undefined, the$SHLI BVERSI ON/$L DMODUL EVERSI ONisused to determine
the version of versioned import library.

I MPLI CI T_COVIVAND _DEPENDENCI ES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SConswill add to each target an implicit dependency on the command represented by thefirst argument
of any command line it executes (which is typically the command itself). By setting such a dependency, SCons
can determine that a target should be rebuilt if the command changes, such as when a compiler is upgraded to a
new version. The specific file for the dependency is found by searching the PATH variable in the ENV dictionary
in the construction environment used to execute the command. The default is the same as setting the construction
variable$l MPLI CI T_COMVAND_DEPENDENCI EStoaTrue-likevalue (“true”, “yes’, or “1” - but not anumber
greater than one, as that has a different meaning).

Action strings can be segmented by the use of an AND operator, &&. In a segemented string, each segment is a
separate “ command line”, these are run sequentially until onefails or the entire sequence has been executed. If an
action string is segmented, then the selected behavior of $I MPLI CI T_COMVAND_DEPENDENCI ES is applied
to each segment.

If $I MPLI CI T_COMVAND DEPENDENCI ES is set to a False-like value (“none”, “false”, “no”, “0”, etc.), then
the implicit dependency will not be added to the targets built with that construction environment.

If $1 MPLI CI T_COVIVAND_DEPENDENCI ES is set to “2" or higher, then that number of arguments in the
command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit
dependenciesto the targets built with that construction environment. The first argument in the command line will
be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute
the command. The other arguments will only be found if they are absolute paths or valid paths relative to the
working directory.

If $I MPLI CI T_COMVAND_DEPENDENCI ES is set to “all”, then all arguments in the command line will be
scanned for relative or absolute paths. If any are present, they will be added asimplicit dependenciesto the targets
built with that construction environment. The first argument in the command line will be searched for using the
PATH variable in the ENV dictionary in the construction environment used to execute the command. The other
arguments will only be found if they are absolute paths or valid paths relative to the working directory.

env = Environnent (1 MPLI CI T_COVVAND DEPENDENCI ES=Fal se)

| NCPREFI X
The prefix used to specify an include directory on the C compiler command line. This will be prepended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CPPI NCFLAGS and
$_FORTRANI NCFLAGS variables are automatically generated.

Iy
=== SCONS 211



I NCSUFFI X
The suffix used to specify an include directory on the C compiler command line. This will be appended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CPPI NCFLAGS and
$_FORTRANI NCFLAGS variables are automatically generated.

| NSTALL
A function to be called to install afile into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the sourcefile's). The function takes
the following arguments:

def install (dest, source, env):

dest isthe path name of the destination file. sour ce isthe path name of the sourcefile. env isthe construction
environment (a dictionary of construction values) in force for thisfile installation.

| NSTALLSTR
The string displayed when afile isinstalled into a destination file name. The default is:

Install file: "$SOURCE"' as "$TARCET"

| NTEL_C_COWPI LER_VERSI ON
Set by thei nt el ¢ Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

JARCHDI R
The directory to which the Java archive tool should change (using the - C option).

JARCOM
The command line used to call the Java archive tool.

JARCOMSTR
The string displayed when the Java archive toal is called If thisis not set, then $J ARCOM (the command line)
is displayed.

env = Environnment (JARCOVSTR="JARchi vi ng $SOURCES i nto $TARCET")

JARFLAGS
General options passed to the Java archive tool. By default thisis set to cf to create the necessary jar file.

JARSUFFI X
The suffix for Javaarchives: . j ar by default.

JAVABOOTCLASSPATH
Specifiesthe location of the bootstrap classfiles. Can be specified asastring or Node object, or asalist of strings
or Node objects.

Thevalue will be added to the JDK command linesviathe - boot ¢l asspat h option, which requires asystem-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVABOOTCLASSPATH is provided in list form. If $JAVABOOTCLASSPATH is a single string containing
search path separator characters (: for POSIX systems or ; for Windows), it will not be modified; and so is

Iy
=== SCONS 212



inherently system-specific; to supply the path in a system-independent manner, give $J AVABOOT CLASSPATH
asalist of pathsinstead.

Note

Can only be used when compiling for releases prior to JDK 9.

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java classfiles.
Any options specified in the $J AVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source files to corresponding Javaclassfiles. If this
is not set, then $J AVACCOM(the command line) is displayed.

env = Envi ronnment (JAVACCOMSTR="Conpi | i ng cl ass files $TARGETS from $SOURCES")

JAVACFLAGS
General options that are passed to the Java compiler.

JAVACLASSDI R
The directory in which Java class files may be found. This is stripped from the beginning of any Java . cl ass
file names supplied to the JavaH builder.

JAVACLASSPATH
Specifiesthe class search path for the JDK tools. Can be specified asa string or Node object, or asalist of strings
or Node objects. Class path entries may be directory names to search for class files or packages, pathnames to
archives (. j ar or . zi p) containing classes, or paths ending in a "base name wildcard" character (*), which
matchesfilesin that directory with a. j ar suffix. See the Java documentation for more details.

The value will be added to the JDK command lines via the - cl asspat h option, which requires a system-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVACLASSPATH is provided in list form. If $JAVACLASSPATH is a single string containing search path
separator characters (1 for POSIX systems or ; for Windows), it will be split on the separator into a list of
individual pathsfor dependency scanning purposes. It will not be modified for JIDK command-line usage, so sucha
string isinherently system-specific; to supply the path in asystem-independent manner, give $J AVACLASSPATH
asalist of pathsinstead.

Note

SCons always supplies a - sour cepat h when invoking the Java compiler javac, regardless of the
setting of $J AVASOURCEPATH, as it passes the path(s) to the source(s) supplied in the call tothe Java
builder via - sour cepat h . From the documentation of the standard Java toolkit for javac: “If not
compiling code for modules, if the - - sour ce- pat h or - sour cepat h option is not specified, then
the user class path is also searched for sourcefiles.” Since- sour cepat h isalwayssupplied, javac will
not use the contents of the value of $J AVACLASSPATH when searching for sources.

JAVACLASSSUFFI X
The suffix for Javaclassfiles; . ¢l ass by default.

Iy
=== SCONS 213



JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Java classes. If this is not set, then
$J AVAHCOM (the command line) is displayed.

env = Environnment (JAVAHCOVETR="Gener ati ng header/stub file(s) $TARGETS from $SOURCES")

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVAI NCLUDES
Include path for Java header files (such asj ni . h).

JAVAPROCESSORPATH
Specifies the location of the annotation processor class files. Can be specified as a string or Node object, or as
alist of strings or Node objects.

The vaue will be added to the JIDK command linesviathe - pr ocessor pat h option, which requires a system-
specific search path separator. This will be supplied by SCons as needed when it constructs the command line
if $JAVAPROCESSORPATH is provided in list form. If $JAVAPROCESSORPATH is a single string containing
search path separator characters (: for POSIX systems or ; for Windows), it will not be modified; and so is
inherently system-specific; to supply the path in a system-independent manner, give $J AVAPROCESSORPATH
asalist of pathsinstead.

New in version 4.5.0

JAVASOURCEPATH
Specifies the list of directories that will be searched for input (source) . j ava files. Can be specified as a string
or Node object, or asalist of strings or Node objects.

The value will be added to the JDK command lines via the - sour cepat h option, which requires a system-
specific search path separator, Thiswill be supplied by SCons as needed when it constructs the command line if
$JAVASOURCEPATH is provided in list form. If $J AVASOURCEPATH is a single string containing search path
separator characters(: for POSIX systemsor ; for Windows), it will not be modified, and soisinherently system-
specific; to supply the path in a system-independent manner, give $J AVASOURCEPATH as alist of pathsinstead.

Note that the specified directories are only added to the command line via the - sour cepat h option. SCons
does not currently search the $J AVASOURCEPATH directories for dependent . j ava files.

JAVASUFFI X
The suffix for Javafiles; . j ava by default.

JAVAVERS| ON
Specifies the Java version being used by the Java builder. Set this to specify the version of Java targeted by the
javac compiler. This is sometimes necessary because Java 1.5 changed the file names that are created for nested
anonymous inner classes, which can cause a mismatch with the files that SCons expects will be generated by the
javac compiler. Setting $J AVAVERSI ON to a version greater than 1. 4 makes SCons redlize that a build with
such acompiler is actually up to date. The default is 1. 4.

Iy
=== SCONS 214



While thisis not primarily intended for selecting one version of the Java compiler vs. another, it does have that
effect on the Windows platform. A more precise approach is to set $J AVAC (and related construction variables
for related utilities) to the path to the specific Java compiler you want, if that is not the default compiler. On non-
Windows platforms, theal t er nat i ves system may provide away to adjust the default Java compiler without
having to specify explicit paths.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOVBTR
The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then
$LATEXCOM(the command line) is displayed.

env = Environment (LATEXCOVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRI ES
The maximum number of times that LaTeX will be re-run if the. | og generated by the $L ATEXCOMcommand
indicates that there are undefined references. The default isto try to resolve undefined references by re-running
LaTeX up to three times.

LATEXSUFFI XES
Thelist of suffixes of filesthat will be scanned for LaTeX implicit dependencies(\ i ncl ude or\i nport files).
The default listis:

[".tex", ".1tx", ".latex"]

LDMODULE
The linker for building loadable modules. By default, thisis the same as $SHLI NK.

L DMODUL ECOM
The command linefor building loadable modules. On Mac OS X, thisusesthe $L. DMODUL E, $L DMODUL EFLAGS
and $FRAMEVWORKSFLAGS variables. On other systems, thisisthe same as $SHLI NK.

L DMODULECOVSTR
If set, the string displayed when building loadable modules. If not set, then $L. DMODUL ECOM(the command line)
is displayed.

LDMODULEEM TTER
Contains the emitter specification for the Loadabl eMbdul e builder. The manpage section "Builder Objects’
contains general information on specifying emitters.

LDMODULEFLAGS
General user options passed to the linker for building loadable modules.

L DMODUL ENOVERSI ONSYMLI NKS
Instructs the Loadabl eMbdul e builder to not automatically create symlinks for versioned modules. Defaults
to $SHLI BNOVERSI ONSYMLI NKS

Iy
=== SCONS 215



L DMODUL EPREFI X
The prefix used for loadable module file names. On Mac OS X, this is null; on other systems, this is the same
as $SHLI BPREFI X.

_ L DMODUL ESONAMVE
A macro that automatically generates loadable modules SONAME based on $TARGET,
$LDMODULEVERSION and $LDMODULESUFFIX. Used by Loadabl eModul e builder when thelinker tool
supports SONAME (e.g. gnhul i nk).

L DMODUL ESUFFI X
The suffix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLIBSUFFIX.

LDMODULEVERSI ON
When this construction variable is defined, a versioned loadable module is created by Loadabl eModul e
builder. This activates the $_ L DMODUL EVERSI ONFLAGS and thus modifies the $L DMODUL ECOMas required,
adds the version number to the library name, and creates the symlinks that are needed. $L DMODULEVERSI ON
versions should exist in the same format as $SHLI BVERSI ON.

_ LDMODULEVERSI ONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned
Loadabl eModul e (that is when $LDMODULEVERSI ON is set). _LDMODULEVERSI ONFLAGS usualy
adds $SHLI BVERSI ONFLAGS and some extra dynamically generated options (such as - W, - sonane=
$_LDMODULESONAME). It is unused by plain (unversioned) loadable modules.

LDMODUL EVERSI ONFLAGS
Extra flags added to $L DMODULECOMwhen building versioned Loadabl eMbdul e. These flags are only used
when $LDMODULEVERSI ONiis set.

LEX
Thelexical analyzer generator.

LEX_ HEADER FI LE
If supplied, generate a C header file with the name taken from this variable. Will be emitted asa - - header -
fi | e= command-line option. Usethisin preferenceto including - - header - fi | e= in SLEXFLAGS directly.

LEX_TABLES_FI LE
If supplied, write the lex tablesto afile with the name taken from this variable. Will be emitted asa- - t abl es-
fi | e= command-line option. Use thisin preferencetoincluding - - t abl es- fi | e=in $LEXFLAGS directly.

LEXCOM
The command line used to call the lexical analyzer generator to generate a sourcefile.

LEXCOVSTR
The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then
$LEXCOM (the command line) is displayed.

env = Environnent (LEXCOMSTR="Lex' i ng $TARGET from $SOURCES")

LEXFLAGS
General options passed to the lexical analyzer generator. In addition to passing the value on during invocation, the
| ex tool also examines this construction variable for options which cause additional output files to be generated,
and adds those to the target list. Recognized for this purpose are GNU flex options - - header-fil e=and- -
t abl es-fi | e=; the output file is named by the option argument.

Iy
=== SCONS 216



Notethat filesspecified by - - header-fi | e=zand- -t abl es-fi | e= may not be properly handled by SCons
in al situations. Consider using $SLEX_HEADER_FI LE and $LEX_TABLES_FI LE instead.

LEXUNI STD
Used only on windows environments to set alex flag to prevent 'unistd.h’ from being included. The default value
is'--nounistd'.

_LI BDI RFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
directoriesto be searched for library. The value of $_LI BDI RFLAGS is created by respectively prepending and
appending $L1 BDI RPREFI X and $LI BDI RSUFFI X to each directory in $L1 BPATH.

LI BDI RPREFI X
The prefix used to specify alibrary directory on the linker command line. Thiswill be prepended to each directory
inthe $LI BPATH construction variable whenthe $_ L1 BDI RFLAGS variable is automatically generated.

LI BDI RSUFFI X
The suffix used to specify alibrary directory on the linker command line. Thiswill be appended to each directory
inthe $LI BPATH construction variable when the $_ L1 BDI RFLAGS variable is automatically generated.

LI BEM TTER
Contains the emitter specification for the St at i cLi br ary builder. The manpage section "Builder Objects’
contains general information on specifying emitters.

_LI BFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
libraries to be linked with the resulting target. The value of $_LI BFLAGS is created by respectively prepending
and appending $LI BLI NKPREFI X and $L1 BLI NKSUFFI X to each filenamein $LI BS.

LI BLI NKPREFI X
The prefix used to specify alibrary to link on the linker command line. Thiswill be prepended to each library in
the $L1 BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LI BLI NKSUFFI X
The suffix used to specify alibrary to link on the linker command line. This will be appended to each library in
the $L1 BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LI BPATH
Thelist of directoriesthat will be searched for libraries specified by the $L1 BS construction variable. $LI BPATH
should be a list of path strings, or a single string, not a pathname list joined by Python's os. sep. Do not put
library search directives directly into $L1 NKFLAGS or $SHLI NKFLAGS as the result will be non-portable.

Note: directory namesin $LI BPATHwill be looked-up relative to the directory of the SConscript file when they
are used inacommand. To force sconsto look-up adirectory relativeto theroot of the source tree use the# prefix:
env = Environnment (LI BPATH=" #/1i bs")

The directory look-up can also be forced using the Di r function:

libs = Dir('libs")

env = Environment (LI BPATH=I i bs)

The directory list will be added to command lines through the automatically-generated $_LI BDI RFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the

Iy
=== SCONS 217



$LI BDI RPREFI X and $LI BDI RSUFFI X construction variables to each directory in $LI BPATH. Any
command lines you define that need the $LI BPATH directory list should include $_LI| BDI RFLAGS:

env = Environment (LI NKCOVE"ny_| i nker $_LI BDI RFLAGS $ LI BFLAGS -0 $TARGET $SOURCE")

LI BPREFI X
The prefix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mglib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LI BPREFI XES
A list of al legal prefixes for library file names. When searching for library dependencies, SCons will look for
files with these prefixes, the base library name, and suffixes from the $LI BSUFFI XES list.

LI BS
A list of one or more libraries that will be added to the link line for linking with any executable program, shared
library, or loadable module created by the construction environment or override.

String-valued library names should include only the library base names, without prefixessuch asl i b or suffixes
such as. so or . dl | . The library list will be added to command lines through the automatically-generated
$_LI BFLAGS construction variable which is constructed by respectively prepending and appending the val ues of
the$L1 BLI NKPREFI Xand $L1 BLI NKSUFFI X construction variablesto each library namein $LI BS. Library
name strings should not include a path component, instead the compiler will be directed to look for librariesin
the paths specified by $L1 BPATH.

Any command lines you define that need the $LI BS library list should include $_LI BFLAGS:

env = Environment (LI NKCOVE"ny_| i nker $_LI BDI RFLAGS $ LI BFLAGS -0 $TARCGET $SOURCE")

If youadd aFi | e object to the $LI BS list, the name of that file will be added to $_L| BFLAGS, and thusto the
link line, as-is, without $LI BLI NKPREFI X or $L1 BLI NKSUFFI X. For example:

env. Append(LIBS=Fil e(' /tnmp/ nylib.so"))
In all cases, sconswill add dependencies from the executable program to al the librariesin thislist.

LI BSUFFI X
The suffix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LI BSUFFI XES
A list of al legal suffixes for library file names. When searching for library dependencies, SCons will look for
fileswith prefixes from the $L1 BPREFI XES list, the base library name, and these suffixes.

LI CENSE
The abbreviated name, preferably the SPDX code, of the license under which this project is released
(GPL-3.0, LGPL-2.1, BSD-2-Clause e€tc.). See http://www.opensource.org/licenses/alphabetical [http://
www.opensource.org/licenses/alphabetical] for alist of license names and SPDX codes.

See the Package builder.

L1 NESEPARATOR
The separator used by the Substfil e and Text fi |l e builders. This value is used between sources when
constructing the target. It defaults to the current system line separator.

Iy
=== SCONS 218


http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical

LI NGUAS_FI LE
The $LI NGUAS_FI LE defines filg(s) containing list of additiona linguas to be processed by PO nit,
PQOUpdat e or MOFi | es builders. It also affects Tr ans| at e builder. If the variable contains a string, it defines
name of the list file. The $LI NGUAS_FI LE may be alist of file names aswell. If $LI NGUAS_FI LE is set to
Tr ue (or non-zero numeric value), the list will be read from default file named LI NGUAS.

LI NK
The linker. See also $SHLI NK for linking shared objects.

On POSIX systems (those using the | i nk tool), you should normally not change this value as it defaults to a
"smart” linker tool which selects acompiler driver matching the type of sourcefilesin use. So for example, if you
set $CXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

LI NKCOM
The command line used to link object files into an executable. See aso $SHLI NKCOMfor linking shared objects.

LI NKCOVBTR
If set, the string displayed when object filesarelinked into an executable. If not set, then $L1 NKCOM(the command
line) isdisplayed. See d'so $SHLI NKCOMBTR. for linking shared objects.

env = Environnent (LI NKCOVSTR = "Li nki ng $TARGET")

LI NKFLAGS
General user options passed to the linker. Note that this variable should not contain -1 (or similar) options
for linking with the libraries listed in $LI BS, nor - L (or similar) library search path options that scons
generates automatically from $L1 BPATH. See $_LI| BFLAGS above, for the variable that expands to library-
link options, and $_L| BDI RFLAGS above, for the variable that expands to library search path options. See also
$SHLI NKFLAGS. for linking shared objects.

M4
The M4 macro preprocessor.

MACOM
The command line used to pass files through the M4 macro preprocessor.

MACOVBTR
The string displayed when afile is passed through the M4 macro preprocessor. If thisis not set, then $MACOM
(the command line) is displayed.

MAFLAGS
General options passed to the M4 macro preprocessor.

MAKEI NDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEI NDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEI NDEXCOVSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If thisis not set, then $MAKEI NDEXCOM (the command line) is displayed.

MAKEI NDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

Iy
=== SCONS 219



MAXLI NELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

M DL
The Microsoft IDL compiler.

M DLCOM
The command line used to pass files to the Microsoft IDL compiler.

M DLCOMSTR
The string displayed when the Microsoft IDL compiler iscalled. If thisis not set, then $M DLCOM(the command
line) is displayed.

M DLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFI X
Suffix used for MOfiles (default: * . mo' ). Seenrsgf nt tool and MOFi | es builder.

VSGFMT
Absolute path to msgfmt(1) binary, found by Det ect () . Seensgf nt tool and MOFi | es builder.

MSGFMICoMm
Complete command line to run msgfmt(1) program. See nsgf mt tool and MOFi | es builder.

MSGFMITCOMSTR
String to display when msgfmt(1) is invoked (default: ' ' , which means *“print $MSGFMITCOM'). See msgf nt
tool and MOFi | es builder.

MSGFMTFLAGS
Additional flags to msgfmt(1). See nsgf nt tool and MOFi | es builder.

MSG NI T
Path to msginit(1) program (found viaDet ect () ). Seensgi ni t tool and PO ni t builder.

MBG NI TCOM
Complete command line to run msginit(1) program. See nsgi ni t tool and PO ni t builder.

M5G NIl TCOMSTR
String to display when msginit(1) isinvoked (default: * ', which means ™ print SMSG NI TCOM'). Seensgi ni t
tool and POl ni t builder.

M5GA NI TFLAGS
List of additional flags to msginit(1) (default: [ ] ). Seensgi ni t tool and PO ni t builder.

_MBSG NI TLOCALE
Interna “macro". Computes locale (language) name based on target filename (default:
" ${ TARGET. fi | ebase}"' ).

Seensgi ni t tool and PA ni t builder.

MSGVERCGE
Absolute path to msgmer ge(1) binary as found by Det ect () . See nsgner ge tool and POUpdat e builder.

MBGVERGECOM
Complete command line to run msgmer ge(1) command. See nsgner ge tool and POUpdat e builder.

Iy
=== SCONS 220



MSGVERGECOVETR
String to be displayed when msgmer ge(1) isinvoked (default: ' * , which means ™ print SMSGVERGECOM'). See
nsgner ge tool and POUpdat e builder.

MSGVERCGEFLAGS
Additional flags to msgmerge(1) command. See msgrrer ge tool and POUpdat e builder.

MSSDK_DI R
The directory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSI ON
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versionsinclude 6. 1, 6. 0A, 6. 0, 2003R2 and 2003R1.

MBVC_BATCH

When set to any trueval ue, specifiesthat SCons should batch compilation of object fileswhen calling the Microsoft
Visual C/C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in asingle call to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invocation (via the $CHANGED SOURCES construction variable). Any compilations
where the object (target) file base name (minus the . obj ) does not match the source file base name will be
compiled separately.

MSVC_NOTFOUND_PCLI CY
Specify the scons behavior when the Microsoft Visual C/C++ compiler is not detected.

The $MSVC_NOTFOUND_PQOLI CY specifiesthe scons behavior when no msvc versions are detected or when the
requested msvc version is not detected.

The valid values for $MSVC_NOTFOUND_PCOLI CY and the corresponding scons behavior are:

"Error' or 'Exception'
Rai se an exception when no msvc versions are detected or when the requested msvc version is not detected.
"Warning' or 'Warn'
Issue awarning and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

"lgnore' or 'Suppress'
Take no action and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.
The SMSVC_NOTFOUND_POLI CY is applied when any of the following conditions are satisfied:

» $MSVC_VERSI ONis specified, the default tools list isimplicitly defined (i.e., the tools list is not specified),
and the default tools list contains one or more of the msvc tools.

» $MBVC_VERSI ON is specified, the default tools list is explicitly specified (eg., t ool s=["' default']),
and the default tools list contains one or more of the msvc tools.

» A non-default tools list is specified that contains one or more of the msvc tools (e.g., t ool s=[ ' nsvc',
"mslink']).

The $MSVC_NOTFOUND_POLI CY isignored when any of the following conditions are satisfied:

» $MBVC_VERSI ON is not specified and the default tools list is implicitly defined (i.e., the tools list is not
specified).

Iy
=== SCONS 221



« $MSVC _VERSI ON is not specified and the default tools list is explicitly specified (eg.,
tool s=[' default']).

» A non-default tool list is specified that does not contain any of the msvc tools (e.g., t ool s=[' mi ngw ]).
Important usage details:

* $IMBVC_NOTFOUND_PCLI CY must be passed as an argument to the Envi r onment constructor when an
msvc tool (e.g., msvc, nmeVS, €tc.) is loaded via the default tools list or via a tools list passed to the
Envi r onment constructor. Otherwise, $MSVC_NOTFOUND_POLI CY must be set before the first msvc tool
isloaded into the environment.

When $MSVC_NOTFQUND_POLI CY is not specified, the default scons behavior is to issue a warning and
continue subject to the conditions listed above. The default scons behavior may change in the future.

New in version 4.4

MBVC_SCRI PT_ARGS
Pass user-defined arguments to the Visual C++ batch file determined via autodetection.

$MBVC_SCRI PT_ARGS is available for msvc batch file arguments that do not have first-class support via
construction variables or when there is an issue with the appropriate construction variable validation. When
available, it is recommended to use the appropriate construction variables (e.g., SMSVC_TOOLSET_VERSI ON)
rather than $SMSVC_SCRI PT_ ARGS arguments.

Thevalid values for $MSVC_SCRI PT_ARGS are: None, astring, or alist of strings.

The $MSVC_SCRI PT_ARGS valueisconverted to ascalar string (i.e., "flattened"). Theresulting scalar string, if
not empty, is passed as an argument to the msvc batch file determined via autodetection subject to the validation
conditions listed below.

$MBVC_SCRI PT_ARGS isignored when the valueis None and when the result from argument conversion is an
empty string. The validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:
» $MBVC_SCRI PT_ARGS is specified for Visual Studio 2013 and earlier.
e Multiple SDK version arguments (e.g., ' 10. 0. 20348. 0' ) are specified in SMSVC_SCRI PT_ARGS.

* $MBVC_SDK_VERSI ON is specified and an SDK version argument (eg., ' 10.0.20348.0') is
specified in $SMSVC_SCRI PT_ARGS. Multiple SDK version declarations via $MSVC_SDK_VERSI ON and
$MBVC_SCRI PT_ARGS are not allowed.

e Multiple toolset version arguments (eqg., '-vcvars_ver=14.29') ae specified in
$MSVC_SCRI PT_ARGS.

+ $MSVC TOOLSET_VERSI ON is specified and a toolset version argument (eg., -
vecvars_ver=14. 29') is specified in $MSVC_SCRI PT_ARGS. Multiple toolset version declarations via
$MSVC_TOOLSET_VERSI ONand $MSVC_SCRI PT_ARGS are not allowed.

» Multiple spectre library arguments (e.g., ' -vcvars_spectre_l i bs=spectre') are specified in
$MSVC_SCRI PT_ARGS.

« $MSVC SPECTRE_LIBS is enabled and a spectre library argument (eg., '-
vcvars_spectre_l i bs=spectre') is specified in $MSVC_SCRI PT_ARGS. Multiple spectre library
declarations via$MSVC_SPECTRE_LI BS and $MSVC_SCRI PT_ARGS are not allowed.

Iy
=== SCONS 222



e Multiple UWP arguments (e.g., uwp or st or e) are specified in $MSVC_SCRI PT_ARGS.

e SMBVC UWP_APP is enabled and a UWP argument (e.g., uwp or store) is specified in
$MBVC_SCRI PT_ARGS. Multiple UWP declarations via SMSVC_UWP_APP and $MSVC_SCRI PT_ARGS
are not allowed.

Example 1 - A Visua Studio 2022 build with an SDK version and a toolset version specified with a string
argument:

env = Environment (MSVC_VERSI ON=' 14. 3', MSVC_SCRI PT_ARGS=' 10. 0. 20348. 0 -vcvars_ver=14. 29

Example 2 - A Visual Studio 2022 build with an SDK version and atoolset version specified with alist argument:

env = Environnment (MSVC_VERSI ON=' 14. 3', MSVC_SCRI PT_ARGS=["' 10. 0. 20348. 0', '-vcvars_ver=1
Important usage details:

* $MBVC_SCRI PT_ARGS must be passed as an argument to the Envi r onnent constructor when an msvc
tool (e.g., nVvC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment
constructor. Otherwise, SMSVC_SCRI PT_ARGS must be set before the first msvc tool is loaded into the
environment.

» Other than checking for multiple declarations as described above, $MSVC_SCRI PT_ARGS arguments are not
validated.

* Erroneous, inconsistent, and/or version incompatible SMSVC_SCRI PT_ARGS arguments are likely to result
in build failures for reasons that are not readily apparent and may be difficult to diagnose. The burdenison
the user to ensure that the arguments provided to the msvc batch file are valid, consistent and compatible with
the version of msvc selected.

New in version 4.4

MBVC_SCRI PTERROR_POLI CY
Specify the scons behavior when Microsoft Visual C/C++ batch file errors are detected.

The $MSVC_SCRI PTERROR_PCLI CY specifies the scons behavior when msvc batch file errors are detected.
When $MSVC_SCRI PTERROR_PQOLI CY is not specified, the default scons behavior is to suppress msvc batch
file error messages.

Theroot cause of msvc build failures may be difficult to diagnose. In these situations, setting the scons behavior
to issue a warning when msvc batch file errors are detected may produce additional diagnostic information.

Thevalid values for $MSVC_SCRI PTERROR _PCLI CY and the corresponding scons behavior are:

"Error' or 'Exception'
Raise an exception when msvc batch file errors are detected.

"Warning' or 'Warn'
I ssue awarning when msvc batch file errors are detected.

"l gnore' or 'Suppress'
Suppress msvc batch file error messages.

New in version 4.4

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

Iy
=== SCONS 223



Example 1 - A Visual Studio 2022 build with user-defined script arguments:

env = environnment (MSVC VERSI ON=' 14. 3', MSVC SCRI PT_ARGS=['8.1', 'store', '-vcvars_ver=1
env. Progranm(' hello', ['hello.c'], CCFLAGS='/MD , LIBS=['kernel32', 'user32', 'runtineob

Example 1 - Output fragment:

l'ink /nologo /QUT: _buil dO01\ hel | 0. exe kernel 32.1ib user32.1ib runtineobject.lib _buildO
LINK : fatal error LNK1104: cannot open file ' MSVCRT.Iib'

Example 2 - A Visua Studio 2022 build with user-defined script arguments and the script error policy set to issue
awarning when msvc batch file errors are detected:

env = environment (MSVC VERSI ON=' 14. 3", MSVC _SCRI PT_ARGS=['8.1', 'store', '-vcvars_ver=1
env. Progran(' hello', ['hello.c'], CCFLAGS='/MD , LIBS=['kernel32', 'user32', 'runtineob

Example 2 - Output fragment:

scons: warning: vc script errors detected:

[ ERROR vcvars. bat] The UWP Application Platformrequires a Wndows 10 SDK.

[ ERROR vcvars. bat] WndowsSdkDir = "C: \Program Fil es (x86)\Wndows Kits\8.1\"
[ ERROR vcvars. bat] host/target architecture is not supported : { x64 , x64 }

link /nol ogo /QOUT: buil dOO1\ hel | 0. exe kernel 32.1ib user32.1ib runtineobject.lib _buildO
LINK : fatal error LNK1104: cannot open file ' MSVCRT. i b’

Important usage details:

e $MBVC SCRI PTERROR PQOLI CY must be passed as an argument to the Envi r onnment constructor when
an msvc tool (e.g., mevc, NBVS, €tc.) is loaded via the default tools list or via a tools list passed to the
Envi r onment constructor. Otherwise, $MSVC_SCRI PTERROR _POLI CY must be set before the first msvc
tool isloaded into the environment.

» Due to scons implementation details, not all Windows system environment variables are propagated to the
environment in which the msvc batch file is executed. Depending on Visual Studio version and installation
options, non-fatal msvc batch file error messages may be generated for ancillary tools which may not affect
builds with the msvc compiler. For this reason, caution is recommended when setting the script error policy
to raise an exception (e.g.,' Error').

New in version 4.4

MSVC_SDK_VERSI ON
Build with a specific version of the Microsoft Software Development Kit (SDK).

Thevalid values for $MSVC_SDK_VERSI ON are: None or a string containing the requested SDK version (e.g.,
' 10. 0. 20348. 0").

$MBVC_SDK_VERSI ONisignored when thevalueisNone and when the valueisan empty string. The validation
conditions below do not apply.

Iy
=== SCONS 224



An exception is raised when any of the following conditions are satisfied:
» $MSVC_SDK_VERSI ONis specified for Visual Studio 2013 and earlier.

» $MBVC_SDK_VERSI ONis specified and an SDK version argument is specified in $MSVC_SCRI PT_ARGS.
Multiple SDK versiondeclarationsvia$MsVC _SDK_VERSI ONand $MSVC_SCRI PT_ ARGS are not allowed.

» The $MBVC_SDK_VERSI ON specified does not match any of the supported formats:
e '10. 0. XXXXX. Y' [SDK 10.0]
« '8.1 [SDK81]]

» The system folder for the corresponding $MSVC_SDK_VERSI ON version is not found. The requested SDK
version does not appear to beinstalled.

e The $SMBVC_SDK_VERSI ON version does not appear to support the requested platform type (i.e., UAP or
Deskt op). Therequested SDK version platform type components do not appear to be installed.

* The $MSVC SDK VERSI ONversion is 8. 1, the platform type is UAP, and the build tools selected are from
Visua Studio 2017 and later (i.e., $MSVC_VERSI ON must be '14.0' or $MSVC_TOOLSET_VERSI ON must
be '14.0").

Example 1 - A Visual Studio 2022 build with a specific Windows SDK version:

env = Environnment (MSVC_VERSI ON=' 14. 3', MSVC_SDK_VERSI ON=' 10. 0. 20348. 0')

Example 2 - A Visual Studio 2022 build with a specific SDK version for the Universal Windows Platform:

env = Environnent (MSVC_VERSI ON=' 14. 3', MSVC_SDK_VERSI ON=' 10. 0. 20348. 0' , MSVC_UWP_APP=Tr
Important usage details:

» $MBVC _SDK_VERSI ON must be passed as an argument to the Envi r onment constructor when an msvc
tool (e.g., nVC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnent
constructor. Otherwise, $MSVC_SDK_VERSI ON must be set before the first msvc tool is loaded into the
environment.

» Should a DK 10.0 version be installed that does not follow the naming scheme above, the SDK version will
need to be specified via SMSVC_SCRI PT_ARGS until the version number validation format can be extended.

» Should an exception be raised indicating that the SDK version is not found, verify that the requested SDK
version isinstalled with the necessary platform type components.

e There is a known issue with the Microsoft libraries when the target architecture is ARM64 and a Windows
11 SDK (version' 10. 0. 22000. 0' and later) is used with the v141 build tools and older v142 toolsets
(versions' 14. 28. 29333"' and earlier). Should build failures arise with these combinations of settings due
to unresolved symbols in the Microsoft libraries, $MSVC_SDK_VERSI ON may be employed to specify a
Windows 10 SDK (e.g.,' 10. 0. 20348. 0' ) for the build.

New in version 4.4

MSVC_SPECTRE LI BS
Build with the spectre-mitigated Visual C++ libraries.

Thevalid values for $MSVC_SPECTRE_LI BS are: Tr ue, Fal se, or None.

Iy
=== SCONS 225



When $MBVC_SPECTRE_LI BSisenabled (i.e., Tr ue), the Visual C++ environment will include the paths to
the spectre-mitigated implementations of the Microsoft Visual C++ libraries.

An exception is raised when any of the following conditions are satisfied:
* $MBVC SPECTRE LI BSisenabled for Visual Studio 2015 and earlier.

e $MBVC SPECTRE_LI BSisenabled and a spectre library argument is specified in SMSVC_SCRI PT_ARGS.
Multiple spectre library declarations via $MSVC_SPECTRE_LI BS and $MSVC_SCRI PT_ARGS are not
alowed.

* $MBVC_SPECTRE_LI BSisenabled and the platform type is UWP. There are no spectre-mitigated libraries for
Universal Windows Platform (UWP) applications or components.

Example - A Visua Studio 2022 build with spectre mitigated Visual C++ libraries:

env = Environnent (MSVC VERSI ON=' 14. 3", MSVC _SPECTRE LI BS=Tr ue)
Important usage details:

* $MBVC_SPECTRE_LI BS must be passed as an argument to the Envi r onnment constructor when an msvc
tool (e.g., nsVvC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment
constructor. Otherwise, $MSVC_SPECTRE_LI BS must be set before the first msvc tool is loaded into the
environment.

 Additional compiler switches(e.g.,/ Qspect r e) arenecessary for including spectre mitigationswhen building
user artifacts. Refer to the Visual Studio documentation for details.

» The existence of the spectre libraries host architecture and target architecture folders are not verified when
$MSVC_SPECTRE_LI BSisenabled which could result in build failures. The burden is on the user to ensure
the requisite libraries with spectre mitigations are installed.

New in version 4.4

MBVC_TOOLSET_VERSI ON
Build with a specific Visual C++ toolset version.

Specifying $MSVC_TOOLSET_VERSI ON does not affect the autodetection and selection of msvc instances. The
$MBVC_TOOLSET_VERSI ONisapplied after an msvc instance is selected. This could be the default version of
msvc if $MSVC_VERSI ONis not specified.

Thevalid valuesfor SMSVC_TOCOLSET_VERSI ONare: None or astring contai ning the requested tool set version
(eg. ' 14.29").

$MSVC_TOOLSET_VERSI ONis ignored when the value is None and when the value is an empty string. The
validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:
* $MSVC_TOOLSET_VERSI ONis specified for Visual Studio 2015 and earlier.

* $MSVC TOOLSET_VERSI ON is specified and a toolset version argument is specified in
$MBVC_SCRI PT_ARGS. Multiple toolset version declarations via $MSVC _TOOLSET VERSI ON and
$MSVC_SCRI PT_ARGS are not allowed.

» The SMSVC_TOOLSET_VERSI ON specified does not match any of the supported formats:
e XX Y

Iy
=== SCONS 226



o " XXYY
o " XX YY. 2272727

o "XX YY. Z' to' XX. YY. ZZZZ' [sconsextension not directly supported by the msvc batch files and may
be removed in the future]

" XX. YY. ZZ. N [SxSformat]
« " XX. YY. ZZ. NN [SxSformat]

» The major msvc version prefix (i.e., ' XX. Y ) of the SMSVC_TOOLSET_VERSI ON specified is for Visual
Studio 2013 and earlier (e.g.,' 12.0").

» The major msvc version prefix (i.e., ' XX. Y' ) of the SMSVC_TOOLSET_VERSI ON specified is greater than
the msvc version selected (e.g., ' 99. 0').

» A system folder for the corresponding $MSVC_TOOLSET_VERSI ON version is not found. The requested
toolset version does not appear to beinstalled.

Toolset selection details:

* When $MSVC_TOOLSET_VERSI ONis not an SxS version number or a full toolset version number: the first
toolset version, ranked in descending order, that matchesthe $MSVC_TOOLSET_VERSI ON prefix is sel ected.

* When $MSVC_TOOLSET_VERSI ONis specified using the major msvc version prefix (i.e, ' XX. Y' ) and the
major msvc version is that of the latest release of Visual Studio, the selected toolset version may not be the
same as the default Visual C++ toolset version.

In the latest release of Visual Studio, the default Visual C++ toolset version is not necessarily the tool set with
the largest version number.

Example 1 - A default Visual Studio build with a partial toolset version specified:

env = Environnment (MSVC TOOLSET VERSI ON=' 14. 2')

Example 2 - A default Visual Studio build with a partial toolset version specified:

env = Environment (MSVC_TOCOLSET_VERSI ON=' 14. 29')

Example 3 - A Visual Studio 2022 build with afull toolset version specified:

env = Environment (MSVC_VERSI ON=' 14. 3', MSVC _TOOLSET_VERSI ON=' 14. 29. 30133")

Example 4 - A Visual Studio 2022 build with an SxS toolset version specified:

env = Environnment (MSVC VERSI ON=' 14. 3', MSVC TOOLSET VERSI ON=' 14. 29. 16. 11')
Important usage details:

* $MBVC _TOOLSET_VERSI ON must be passed as an argument to the Envi r onnent constructor when an
msvc tool (e.g., msvc, mevs, etc.) is loaded via the default tools list or via a tools list passed to the
Envi r onment constructor. Otherwise, $MSVC_TOOLSET_VERSI ON must be set before the first msvc tool
isloaded into the environment.

Iy
=== SCONS 227



e The existence of the toolset host architecture and target architecture folders are not verified when
$MBVC_TOCOLSET_VERSI ONis specified which could result in build failures. The burden is on the user to
ensure the requisite toolset target architecture build tools are installed.

New in version 4.4

MBVC_USE_SCRI PT
Use a batch script to set up the Microsoft Visual C++ compiler.

If set to the name of aVisual Studio . bat file (e.g. vcvar s. bat ), SConswill run that batch file instead of the
auto-detected one, and extract the relevant variables from the result (typically %8 NCLUDEY, %1 B% and %4°ATH
99 for supplying to the build. This can be useful to force the use of acompiler version that SCons does not detect.
$MBVC_USE_SCRI PT_ARGS provides arguments passed to this script.

Setting $MSVC_USE_SCRI PT to None bypasses the Visua Studio autodetection entirely; use this if you are
running SCons in a Visual Studio cmd window and importing the shell's environment variables - that is, if you
are sure everything is set correctly already and you don't want SCons to change anything.

$MBVC_USE_SCRI PT ignores SMSVC_VERSI ONand $TARGET _ARCH.
Changed in version 4.4: new $MSVC_USE_SCRI PT_ARGS provides away to pass arguments.

MBVC_USE_SCRI PT_ARGS
Provides arguments passed to the script $MSVC_USE_SCRI PT.

New in version 4.4

MBVC_USE_SETTI NGS
Use adictionary to set up the Microsoft Visual C++ compiler.

$MBVC _USE_SETTINGS is ignored when $MSVC USE SCRI PT is defined andior when
$MBVC _USE SETTI NGSisset to None.

The dictionary is used to populate the environment with the relevant variables (typicaly %8 NCLUDEY, %.1 B%
and YATHY) for supplying to the build. This can be useful to force the use of acompiler environment that SCons
does not configure correctly. This is an aternative to manualy configuring the environment when bypassing
Visual Studio autodetection entirely by setting $MSVC_USE_SCRI PT to None.

Here is an example of configuring a build environment using the Microsoft Visual C/C++ compiler included in
the Microsoft SDK on a 64-bit host and building for a 64-bit architecture:

# Mcrosoft SDK 6.0 (MSVC 8.0): 64-bit host and 64-bit target
msvc_use_settings = {
"PATH': [
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. 0\\ VQ\\ Bi n\\ x64",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ Bi n\\ x64",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ Bi n",
"C:\\Wndows\\ M crosof t. NET\\ Framewor k\\ v2. 0. 50727",
"C:\\ W ndows\ \ syst enB2",
"C\\Wndows",
"C:\\ Wndows\ \ Syst enB2\ \ Went',
"C:\\ W ndows\ \ Syst enB82\ \ W ndowsPower Shel | \\ v1. O\ \"
],
"1 NCLUDE": [
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. 0\\VQ\ I ncl ude",
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6.0\\VQ\Incl ude\\ Sys",

Iy
=== SCONS 228



"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ I ncl ude",
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ I ncl ude\\gl ",
],
“LIB": [
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ VQ\\ Li b\ \ x64",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\Li b\\ x64",

1
“LI BPATH': [],

"VSCVD_ARG app_plat": [],
“VCI NSTALLDIR": [],
"VCTool slnstallDir": []

}

# Specifying MSVC VERSI ON i s recomended
env = Environment (MSVC VERSI ON=' 8. 0", MSVC USE_SETTI NGS=nsvc_use_setti ngs)

Important usage details:

* $MBVC _USE_SETTI NGS must be passed as an argument to the Envi r onnment constructor when an msvc
tool (e.g., nVvC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnent
constructor. Otherwise, $MSVC_USE_SETTI NGS must be set before the first msvc tool is loaded into the
environment.

 Thedictionary content requirements are based on the internal msvc implementation and therefore may change
at any time. The burden is on the user to ensure the dictionary contents are minimally sufficient to ensure
successful builds.

New in version 4.4

MBVC_UWP_APP
Build with the Universal Windows Platform (UWP) application Visual C++ libraries.

Thevalid valuesfor $MSVC_UWP_APP are: True, ' 1' , Fal se,' 0", or None.

When $MBVC_UWP_APP isenabled (i.e., True or' 1' ), the Visua C++ environment will be set up to point to
the Windows Store compatible libraries and Visual C++ runtimes. In doing so, any libraries that are built will be
ableto be used in a UWP App and published to the Windows Store.

An exception is raised when any of the following conditions are satisfied:
* $MBVC_UWP_APP isenabled for Visua Studio 2013 and earlier.

e $MBVC _UWP_APP is enabled and a UWP argument is specified in SMSVC_SCRI PT_ARGS. Multiple UWP
declarations via$MSVC_UWP_APP and $MSVC_SCRI PT_ARGS are not allowed.

Example - A Visual Studio 2022 build for the Universal Windows Platform:

env = Environment (MSVC VERSI ON=' 14. 3", MSVC_UWP_APP=Tr ue)
Important usage details:

* $MBVC_UWP_APP must be passed as an argument to the Envi r onment constructor when an msvc tool (e.g.,
nmsvc, msvs, etc.) isloaded viathe default toolslist or viaatoolslist passed tothe Envi r onnment constructor.
Otherwise, $MSVC_UWP_APP must be set before the first msvc tool is loaded into the environment.

» The existence of the UWP libraries is not verified when $MSVC_UWP_APP is enabled which could result in
build failures. The burden is on the user to ensure the requisite UWP libraries are installed.

Iy
=== SCONS 229



MBVC_VERSI ON
Setsthe preferred version of Microsoft Visual C/C++ to use. If the specified version is unavailable (not installed,
or not discoverable), tool initiadization will fail. If $MSVC_VERSI ONis not set, SCons will (by default) select
the latest version of Visual C/C++ installed on your system.

$MBVC_VERSI ON must be passed as an argument to the Envi r onnment constructor when an msvc tool (e.g.,
nsvc, NBVS, etc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment constructor.
Otherwise, SMSVC_VERSI ON must be set before the first msvc tool isloaded into the environment.

The valid values for $MSVC_VERSI ON represent major versions of the compiler, except that versions ending in
Exp refer to "Express' or "Expressfor Desktop" Visua Studio editions, which require distict entries because they
use a different filesystem layout and have some feature limitations compared to the full version. The following
table shows correspondence of the selector string to various version indicators (X' is used as a placeholder for a
singledigit that can vary). Note that it is not necessary to install Visual Studio to build with SCons (for example,
you can install only Build Tools), but if Visual Studio isinstalled, additional builders such as MSVSSol ut i on
and M5VSPr oj ect become avaialable and will correspond to the indicated versions.

SConsKey MSVC++ Version _MSVC VER VS Product M SBuild/
VSVersion

14. 3 14.3x 193x Visual Studio 2022 17.x

14. 2 14.2x 192x Visual Studio 2019 16.x, 16.1x

14.1 14.1 or 14.1x 191x Visual Studio 2017 15.x

14. 1Exp 14.1 1910 Visual Studio 2017 15.0
Express

14.0 14.0 1900 Visual Studio 2015 14.0

14. OExp 14.0 1900 Visual Studio 2015 14.0
Express

12.0 12.0 1800 Visual Studio 2013 12.0

12. OExp 12.0 1800 Visual Studio 2013 12.0
Express

11.0 11.0 1700 Visual Studio 2012 11.0

11. OExp 11.0 1700 Visual Studio 2012 11.0
Express

10.0 10.0 1600 Visual Studio 2010 10.0

10. OExp 10.0 1600 Visual C++ Express 10.0
2010

9.0 9.0 1500 Visual Studio 2008 9.0

9. OExp 9.0 1500 Visual C++ Express 9.0
2008

8.0 8.0 1400 Visual Studio 2005 8.0

8. OExp 8.0 1400 Visual C++ Express 8.0
2005

7.1 7.1 1300 Visual Studio .NET 7.1
2003

7.0 7.0 1200 Visual Studio .NET 7.0
2002

6.0 6.0 1100 Visual Studio 6.0 6.0

Iy
=== SCONS 230



The compilation environment can be further or more precisely specified through the use of several
other construction variables: see the descriptions of $MSVC_TOOLSET_VERSI ON, $MSVC_SDK_VERSI ON,
$MBVC _USE_SCRI PT, SMSVC_USE_SCRI PT_ARGS, and $SMSVC_USE_SETTI NGS.

MBVS
When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSV S being used (can be set via$MSVC_VERSI ON)

VERSIONS
the available versions of MSVSinstaled

VCINSTALLDIR
installed directory of Visual C++

VSINSTALLDIR
installed directory of Visua Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted latest to ol dest.

FRAMEWORKVERSION
latest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various
modules, and the values are 2-tuples where the first is the release date, and the second is the version number.

If a value is not set, it was not available in the registry. Visual Studio 2017 and later do not use the
registry for primary storage of this information, so typically for these versions only PRQJECTSUFFI X and
SOLUTI ONSUFFI X will be set.

MBVS_ARCH
Sets the architecture for which the generated project(s) should build.

Thedefault valueisx86. and64 isalso supported by SConsfor most Visua Studio versions. Since Visual Studio
2015 ar mis supported, and since Visua Studio 2017 ar m64 is supported. Trying to set $MSVS_ARCH to an
architecture that's not supported for a given Visua Studio version will generate an error.

M5VS_PRQIECT_GUI D
The string placed in a generated Microsoft Visual C++ project file as the value of the Pr oj ect GUI D attribute.
Thereis no default value. If not defined, anew GUID is generated.

MBVS_SCC_AUX_PATH
The path name placed in agenerated Microsoft Visual C++ project file asthe value of the Scc Aux Pat h attribute
if the MBVS_SCC_PROVI DER construction variable is also set. There is no default value.

Iy
=== SCONS 231



MBVS_SCC_CONNECTI ON_ROOT

The root path of projects in your SCC workspace, i.e the path under which al project and solution
files will be generated. It is used as a reference path from which the relative paths of the generated
Microsoft Visua C++ project and solution files are computed. The relative project file path is
placed as the value of the ScclLocal Pat h attribute of the project file and as the values of the
SccProj ect Fi | ePat hRel ati vi zedFromConnection[i] (where [i] ranges from O to the number
of projects in the solution) attributes of the @ obal Sect i on( Sour ceCodeCont rol ) section of the
Microsoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the
ScclLocal Pat h[i] (where [i] ranges from O to the number of projects in the solution) attributes of the
d obal Secti on( Sour ceCodeCont rol ) section of the Microsoft Visua Studio solution file. Thisis used
only if the MSBVS_SCC_PROVI DER construction variable is also set. The default value is the current working
directory.

MBVS_SCC_PRQIECT_NAME
The project name placed in agenerated Microsoft Visual C++ project file asthe value of the SccPr oj ect Nane
attributeif theMSVS_SCC_PROVI DER construction variableisalso set. Inthiscasethestring isalso placed inthe
SccPr oj ect NaneO0 attribute of the @ obal Sect i on( Sour ceCodeCont rol ) section of the Microsoft
Visual Studio solution file. Thereis no default value.

MBVS_SCC_PROVI DER
The string placed in a generated Microsoft Visual C++ project file as the value of the SccPr ovi der attribute.
Thestring isalso placed inthe SccPr ovi der 0 attribute of thed obal Sect i on( Sour ceCodeControl )
section of the Microsoft Visua Studio solution file. Thereis no default value.

MBVS_VERSI ON
Set the preferred version of Microsoft Visual Studio to use.

If $MBVS_VERSI ONisnot set, SConswill (by default) select the latest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. Y ou can override
this by specifying the SMBVS_VERSI ON variable when initializing the Environment, setting it to the appropriate
version ('6.0" or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

Deprecated since 1.3.0: $MSVS_VERSI ON is deprecated in favor of SMSVC_VERSI ON. As a transitional aid,
if $MBVS_VERSI ONis set and $MSVC_VERSI ONis not, $MSVC_VERSI ON will be initialized to the value of
$MBVS_VERSI ON. An error israised if If both are set and have different values,

MBVSBUI LDCOM
The build command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual
Studio invoke SCons with any specified build targets.

MBVSCLEANCOM
The clean command line placed in a generated Microsoft Visual C++ project file. The default is to have Visual
Studio invoke SCons with the - ¢ option to remove any specified targets.

MBVSENCODI NG
The encoding string placed in a generated Microsoft Visual C++ project file. The default is encoding
W ndows- 1252.

MBVSPRQJECTCOM
The action used to generate Microsoft Visual C++ project files.

MBVSPRQJECTSUFFI X
The suffix used for Microsoft Visual C++ project (DSP) files. Thedefault valueis. vexpr oj whenusing Visual
Studio 2010 and later, . vcpr oj when using Visua Studio versions between 2002 and 2008, and . dsp when
using Visual Studio 6.0.

Iy
=== SCONS 232



MBVSREBUI LDCOM
The rebuild command line placed in a generated Microsoft Visual C++ project file. The default isto have Visual
Studio invoke SCons with any specified rebuild targets.

MBVSSCONS
The SCons used in generated Microsoft Visual C++ project files. The default is the version of SCons being used
to generate the project file.

MBVSSCONSCOM
The default SCons command used in generated Microsoft Visual C++ project files.

MBVSSCONSCRI PT
The sconscript file (that is, SConst r uct or SConscri pt file) that will be invoked by Visual C++ project
files (through the $MSVSSCONSCOM variable). The default is the same sconscript file that contains the call to
MSVSPr oj ect to build the project file.

MBVSSCONSFLAGS
The SCons flags used in generated Microsoft Visual C++ project files.

MBVSSCLUTI ONCOM
The action used to generate Microsoft Visual Studio solution files.

MBVSSCLUTI ONSUFFI X
The suffix used for Microsoft Visua Studio solution (DSW) files. The default valueis. sl n when using Visual
Studio version 7.x (.NET 2002) and later, and . dswwhen using Visual Studio 6.0.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See also
$W NDOAN5_EMBED MANI FEST.

MIEXECOM
The Windows command line used to embed manifests into executables. See also $MI'SHLI BCOM

MIFLAGS
Flags passed to the $MT manifest embedding program (Windows only).

MI'SHLI BCOM
The Windows command line used to embed manifests into shared libraries (DLLS). See also $MIEXECOM

MACW VERSI ON
The version number of the Metrowerks CodeWarrior C compiler to be used.

MACW VERSI ONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NANMVE
Specfies the name of the project to package.

See the Package builder.

NI NJA ALI AS NAME
The name of the alias target which will cause SConsto create the ninjabuild file, and then (optionally) run ninja.
The default valueisgener at e- ni nj a.

NI NJA_CMD_ARGS
A string which will pass arguments through SConsto the ninjacommand when scons executes ninja. Has no effect
if NI NJA_DI SABLE_AUTO_RUN s set.

Iy
=== SCONS 233



This value can also be passed on the command line:

scons NI NJA CVD_ARGS=-v
or
scons NI NJA CMD _ARGS="-v -j 3"

NI NJA_COVPDB_EXPAND
Boolean value to instruct ninja to expand the command line arguments normally put into response files. If true,
prevents unexpanded lines in the compilation database like “gcc @ sp_fi | €” and instead yields expanded
lineslike“gcc -c -o nyfile.o nyfile.c -la -DXYZ".

Ninja's compdb tool added the - x flag in NinjaV1.9.0

NI NJA DEPFI LE_PARSE_FORNVAT
Determines the type of format ninja should expect when parsing header include depfiles. Can be msvc, gcc, or
cl ang. The nsvc option corresponds to / showl ncl udes format, and gcc or ¢l ang correspond to - MVD
- MR

NI NJA DI R
Thebui | ddi r value. Propagates directly into the generated ninjabuild file. From Ninjasdocs: “ A directory for
some Ninjaoutput files. ... (Y ou can also store other build output in thisdirectory.) ” Thedefault valueis. ni nj a.

NI NJA DI SABLE_AUTO_RUN
Boolean. Default: Fal se. If true, SCons will not run ninja automatically after creating the ninja build file.

If not explicitly set, this will be set to True if --disable _execute ninja or
Set Opti on(' di sabl e_execute_ninja', True) isseen.

NI NJA_ENV_VAR_CACHE
A string that sets the environment for any environment variables that differ between the OS environment and the
SCons execution environment.

It will be compatible with the default shell of the operating system.

If not explicitly set, SCons will generate this dynamically from the execution environment stored in the current
construction environment (e.g. env[ ' ENV' ] ) where those values differ from the existing shell..

NI NJA_FI LE_NAMVE
The filename for the generated Ninja build file. The default isni nj a. bui | d.

NI NJA_FORCE_SCONS_BUI LD
If true, causes the build nodes to callback to scons instead of using ninja to build them. This is intended to be
passed to the environment on the builder invocation. It is useful if you have a build node which does something
which isnot easily trandlated into ninja.

NI NJA_GENERATED_SOURCE_ALI AS_NAME
A string matching the name of a user defined alias which represents a list of all generated sources. This will
prevent the auto-detection of generated sources from $NI NJA_GENERATED SOURCE_SUFFI XES. Then all
other sourcefileswill be madeto depend onthisintheninjabuild file, forcing the generated sourcesto bebuilt first.

NI NJA_GENERATED_SOURCE_SUFFI XES
The list of source file suffixes which are generated by SCons build steps. All source files which match these
suffixeswill be added to the _generated _sources aliasin the output ninjabuild file. Then all other sourcefileswill
be made to depend on thisin the ninja build file, forcing the generated sources to be built first.

Iy
=== SCONS 234



NI NJA_MBVC _DEPS_PREFI X
The nsvc_deps_prefi x string. Propagates directly into the generated ninja build file. From Ninja's docs:
“defines the string which should be stripped from msvc's/ showl ncl udes output”

NI NJA_POOL
Set theni nj a_pool for thisor all targetsin scope for this env var.

NI NJA_ REGENERATE_DEPS
A generator function used to create a ninja depfile which includes al the files which would require SCons to be
invoked if they change. Or alist of said files.

_NINJA_REGENERATE_DEPS_FUNC
Internal value used to specify the function to call with argument env to generate the list of fileswhich if changed
would require the ninja build file to be regenerated.

NI NJA_ SCONS_DAEMON _KEEP_ALI VE
The number of seconds for the SCons deamon launched by ninjato stay alive. (Default: 180000)

NI NJA_SCONS_DAEMON_PORT
The TCP/IP port for the SCons daemon to listen on. NOTE: You cannot use a port already being listened to on
your build machine. (Default: random number between 10000,60000)

NI NJA_SYNTAX
The pathto acustomni nj a_synt ax. py filewhichisused in generation. Thetool currently assumesyou have
ninjainstalled as a Python module and grabs the syntax file from that installation if SNI NJA SYNTAX is not
explicitly set.

no_inport _lib
When set to non-zero, suppresses creation of acorresponding Windows staticimport lib by theShar edLi brary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (. exp) filewhen using Microsoft Visual Studio.

OBJPREFI X
The prefix used for (static) object file names.

OBJSUFFI X
The suffix used for (static) object file names.

PACKAGEROOT
Specifiesthedirectory whereall filesinresulting archivewill be placed if applicable. Thedefault valueis” $NAME-
$VERSI ON'.

See the Package builder.

PACKAGETYPE
Selects the package type to build when using the Package builder. May be a string or list of strings. See the
docuentation for the builder for the currently supported types.

$PACKAGETYPE may be overridden with the - - package- t ype command line option.
See the Package builder.

PACKAGEVERSI ON
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

Seethe Package builder.

Iy
=== SCONS 235



PCH
The Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is
ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the
compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the
PCH file. Example:

env['PCH ] = File('StdAfx.pch')

PCHCOM
The command line used by the PCH builder to generated a precompiled header.

PCHCOVSTR
The string displayed when generating a precompiled header. If thisis not set, then $PCHCOM(the command line)
is displayed.

PCHPDBFLAGS

A construction variabl e that, when expanded, addsthe/ y Dflag to the command lineonly if the $PDB construction
variableis set.

PCHSTCP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variableis not being used. When thisvariableis defineit must be a string
that is the name of the header that is included at the end of the precompiled portion of the source files, or the
empty string if the "#pragma hrdstop" construct is being used:

env[' PCHSTOP'] = ' StdAfx. h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined
SCons will add options to the compiler and linker command line to cause them to generate external debugging
information, and will also set up the dependencies for the PDB file. Example:

env[' PDB'] = 'hello.pdb'

The Visual C++ compiler switch that SCons uses by default to generate PDB information is/ Z7. This works
correctly with parallel (- ) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple abject files. This is also the only way to get debug
information embedded into a static library. Using the / Zi instead may yield improved link-time performance,
although parallel builds will no longer work. Y ou can generate PDB files with the/ Zi switch by overriding the
default $CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOMSTR
The string displayed when calling the pdflatex utility. If thisis not set, then $PDFLATEXCOM(the command line)
is displayed.

env = Environnment ( PDFLATEX; COVBTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

Iy
=== SCONS 236



PDFLATEXFLAGS
General options passed to the pdflatex utility.

PDFPREFI X
The prefix used for PDF file names.

PDFSUFFI X
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOVSTR
The string displayed when calling the pdftex utility. If this is not set, then $PDFTEXCOM (the command line)
isdisplayed.

env = Environnent (PDFTEXCOMSTR = "Bui |l di ng $TARGET from TeX i nput $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKG NFO) to look for installed
versions of the Sun PRO C++ compiler. The defaultis/ usr/ sbi n/ pgkchk.

PKG NFO
On Solaris systems, the package information program that will be used (along with $PKGCHK) to | ook for installed
versions of the Sun PRO C++ compiler. The default ispkgi nf o.

PLATFORM
The name of the platform used to create this construction environment. SCons sets this when initializing the
platform, which by default is auto-detected (see the pl at f or margument to Envi r onmrent ).

env = Environnment (tool s=[])

if env[' PLATFORM] == 'cygw n':
Tool (' m ngw ) (env)

el se:
Tool (' nsvc') (env)

POAUTO NI T
The$PQAUTA NI T variable, if set to Tr ue (on non-zero numeric value), let thensgi ni t tool to automatically
initialize missing PO files with msginit(1). This applies to both, PO ni t and POUpdat e builders (and others
that use any of them).

POCREATE_ALI AS
Common alias for all POfiles created with POl ni t builder (default: * po- cr eat e' ). Seensgi ni t tool and
PA ni t builder.

POSUFFI X
Suffix used for POfiles (default: ' . po' ) Seensgi ni t tool and PO ni t builder.

Iy
=== SCONS 237



POTDOVAI N
The $PCTDOVAI N defines default domain, used to generate POT filename as SPOTDOVAI N. pot when no POT
filenameis provided by the user. This appliesto POTUpdat e, PO ni t and POUpdat e builders (and builders,
that usethem, e.g. Tr ansl at e). Normally (if $POTDOMVAI Nis not defined), the buildersuse messages. pot
as default POT file name.

POTSUFFI X
Suffix used for PO Template files (default: ' . pot ' ). Seexget t ext tool and POTUpdat e builder.

POTUPDATE_ALI AS
Name of the common phony target for all PO Templates created with POUpdat e (default: ' pot - updat e').
Seexget t ext tool and POTUpdat e builder.

POUPDATE_ALI AS
Common aliasfor all POfilesbeing defined with POUpdat e builder (default: ' po- updat e' ). Seensgner ge
tool and POUpdat e builder.

PRI NT_CMD_LI NE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the - q or - s options or their equivalents). The function must accept four arguments: s, t ar get ,
sour ce and env. s is a string showing the command being executed, t ar get , is the target being built (file
node, list, or string name(s)), sour ce, is the source(s) used (file node, list, or string name(s)), and env isthe
environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set or is None,
istojust print the string, asin:

def print_cnd_|ine(s, target, source, env):
sys.stdout.wite(s + "\n")

Here is an example of a more interesting function:

def print_cnd_|ine(s, target, source, env):
sys. stdout. wite(
"Building %6 -> %...\n"
% (
" and '.join([str(x) for x in source]),
and '.join([str(x) for x in target]),

)

env = Environment (PRI NT_CVD LI NE FUNC=print_cnd_| i ne)
env. Program(' foo', ['foo.c', '"bar.c'])

This prints:

scons: Building targets ...

Bui |l di ng bar.c -> bar.o...

Bui |l ding foo.c -> foo.o0...

Bui |l ding foo.o and bar.o -> foo...
scons: done buil ding targets.

Iy
=== SCONS 238



Another example could be a function that logs the actual commandsto afile.

PROGEM TTER
Contains the emitter specification for the Pr ogr ambuilder. The manpage section "Builder Objects’ contains
genera information on specifying emitters.

PROGPREFI X
The prefix used for executable file names.

PROGSUFFI X
The suffix used for executabl e file names.

PSCOM
The command line used to convert TeX DVI filesinto a PostScript file.

PSCOMVBTR
The string displayed when aTeX DVI fileis converted into a PostScript file. If thisis not set, then $PSCOM(the
command line) is displayed.

PSPREFI X
The prefix used for PostScript file names.

PSSUFFI X
The prefix used for PostScript file names.

QT3_AUTOSCAN
Turn off scanning for mocable files. Use the Moc Builder to explicitly specify filesto run moc on.

Changed in 4.5.0: renamed from QT_AUTOSCAN.

QT3_BI NPATH
The path where the Qt binaries are installed. The default value is'$QT3DI R/ bi n'.

Changed in 4.5.0: renamed from QT_BINPATH.

Qr3_CPPPATH
The path where the Qt header files are installed. The default value is '$QT3DI R/include. Note: If you set this
variableto None, the tool won't change the $CPPPATH construction variable.

Changed in 4.5.0: renamed from QT_CPPPATH.

Qr3_DEBUG
Prints lots of debugging information while scanning for moc files.

Changed in 4.5.0: renamed from QT_DEBUG.
Qr3_LI B
Default valueis' gt ' . You may want to set thisto' gt - nt ' . Note: If you set this variable to None, the tool
won't change the $L1 BS variable.
Changed in 4.5.0: renamed from QT_LIB.

Qr3_LI BPATH
The path where the Qt libraries areinstalled. The default valueis'$QT3DI R/ | i b'. Note: If you set thisvariable
to None, thetool won't change the $L1 BPATH construction variable.

Changed in 4.5.0: renamed from QT_LIBPATH.

Iy
=== SCONS 239



QT3_MOC
Default valueis'$QT3_BI NPATH noc'.

QT3_MOCCXXPREFI X
Default valueis' ' . Prefix for moc output files when source is a C++ file.

QT3_MOCCXXSUFFI X
Default valueis' . noc' . Suffix for moc output files when sourceis a C++ file.

Changed in 4.5.0: renamed from QT_MOCCXXSUFFIX.

QT3_MOCFROMCXXCOM
Command to generate a moc file from a C++ file.

Changed in 4.5.0: renamed from QT_MOCFROMCXXCOM.

Qr3_MOCFROMCXXCOMSTR
The string displayed when generating amoc file from aC++ file. If thisisnot set, then $QT3_ MOCFROMCXXCOM
(the command line) is displayed.

Changed in 4.5.0: renamed from QT_MOCFROMCXXCOMSTR.

QT3_MOCFROMCXXFLAGS
Default valueis' -i ' . These flags are passed to moc when moccing a C++ file.

Changed in 4.5.0: renamed from QT_MOCFROMCXXFLAGS.

QT3_MOCFROVHCOM
Command to generate amoc file from a header.

Changed in 4.5.0: renamed from QT_MOCFROMSHCOM.
Qr3_MOCFROVHCOVSTR
The string displayed when generating a moc file from a C++ file. If thisis not set, then $QT3_ MOCFROVHCOM
(the command line) is displayed.
Changed in 4.5.0: renamed from QT_MOCFROMSHCOMSTR.

QT3_MOCFROVHFLAGS
Default valueis' ' . These flags are passed to moc when moccing a header file.

Changed in 4.5.0: renamed from QT_MOCFROMSHFLAGS.

QT3_MOCHPREFI X
Default valueis' moc_

. Prefix for moc output files when source is a header.
Changed in 4.5.0: renamed from QT_MOCHPREFI X.

QTI3_MOCHSUFFI X
Default value is'$CXXFI LESUFFI X'. Suffix for moc output files when source is a header.

Changed in 4.5.0: renamed from QT_MOCHSUFFIX.

Qr3_uC
Default valueis'$QT3_BI NPATH ui c'.

Changed in 4.5.0: renamed from QT_UIC.

Iy
=== SCONS 240



Qr3_UuUl ccom
Command to generate header filesfrom . ui files.

Changed in 4.5.0: renamed from QT_UICCOM.

QT3_Ul CCOVBTR
The string displayed when generating header files from . ui files. If thisis not set, then $QT3_Ul CCOM (the
command line) is displayed.

Changed in 4.5.0: renamed from QT_UICCOMSTR.

Qr3_Ul CDECLFLAGS
Default value is". These flags are passed to uic when creating a header filefroma. ui file.

Changed in 4.5.0: renamed from QT_UICDECLFLAGS.

Qr3_Ul CDECLPREFI X
Default valueis' ' . Prefix for uic generated header files.

Changed in 4.5.0: renamed from QT_UICDECLPREFIX.

QT3_Ul CDECLSUFFI X
Default valueis' . h' . Suffix for uic generated header files.

Changed in 4.5.0: renamed from QT_UICDECL SUFFIX.

Qr3_Ul Cl MPLFLAGS
Default valueis' ' . These flags are passed to uic when creating a C++ filefrom a. ui file.

Changed in 4.5.0: renamed from QT_UICIMPFLAGS.

Qr3_ul Cl MPLPREFI X
Default valueis' ui c_

. Prefix for uic generated implementation files.
Changed in 4.5.0: renamed from QT_UICIMPLPREFIX.

Qr3_Ul Cl MPLSUFFI X
Default value is'$CXXFI LESUFFI X'. Suffix for uic generated implementation files.

Changed in 4.5.0: renamed from QT_UICIMPLSUFFIX.

QT3_Ul SUFFI X
Default valueis' . ui ' . Suffix of designer input files.

Changed in 4.5.0: renamed from QT_UISUFFIX.

Qr3b R
The path to the Qt installation to build against. If not already set, qt 3 tool triesto obtain thisfromos. envi r on;
if not found there, it triesto make a guess.

Changed in 4.5.0: renamed from QTDIR.

RANLI B
The archive indexer.

RANLI BCOM
The command line used to index a static library archive.

Iy
=== SCONS 241



RANL| BCOMBTR
The string displayed when a static library archive isindexed. If thisis not set, then $RANLI BCOM(the command
line) is displayed.

env = Environnment ( RANLI BCOVSTR = " | ndexi ng $TARCGET")

RANLI BFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resourcefile.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOVSTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then $RCCOM (the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCl NCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCI NCFLAGS is created by respectively prepending and
appending $RCI NCPREFI X and $RCI NCSUFFI X to the beginning and end of each directory in $CPPPATH.

RCl NCPREFI X
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be
prepended to the beginning of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS
variableis expanded.

RCl NCSUFFI X
The suffix used to specify an include directory on the resource compiler command line. Thiswill be appended to
the end of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS variableis expanded.
RDirs
A function that converts astring into alist of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the Shar edLi br ary
builder is passed a keyword argument of r egi st er =Tr ue.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the
Shar edLi br ar y builder is passed a keyword argument of r egi st er =Tr ue.

REGSVRCOMSTR
The string displayed when registering anewly-built DLL file. If thisis not set, then $REGSVRCOM(the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when anewly-built DLL library is registered.
By default, thisincludesthe/ s that prevents dialog boxes from popping up and requiring user attention.

RM C
The Java RMI stub compiler.

Iy
=== SCONS 242



RM CCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified in the $RM CFLAGS construction variable areincluded on this command
line.

RM CCOMSTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RMI
implementations. If thisis not set, then $RM CCOM (the command line) is displayed.

env = Envi ronnent (
RM CCOVBTR="Gener ati ng st ub/skel eton class files $TARGETS from $SOURCES"
)

RM CFLAGS
General options passed to the Java RMI stub compiler.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The value of $_RPATH is created by respectively prepending $RPATHPREFI X and
appending $RPATHSUFFI X to the beginning and end of each directory in SRPATH.

RPATHPREFI X
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
prepended to the beginning of each directory in the $RPATH construction variable when the $_ RPATH variable
isautomatically generated.

RPATHSUFFI X
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is
automatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLI ENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENSERVI CEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These arein addition to any flags
specified in the SRPCGENFLAGS construction variable.

Iy
=== SCONS 243



RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
although the more flexible approach is to associate scanners with a specific Builder. See the manpage sections
"Builder Objects" and "Scanner Objects’ for more information.

SCONS_HOVE
The (optional) path to the SCons library directory, initialized from the external environment. If set, thisisused to
construct a shorter and more efficient search path in the $MSVSSCONS command line executed from Microsoft
Visual C++ project files.

SHCC
The C compiler used for generating shared-library objects. See also $CC for compiling to static objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line. See
also $CCCOMfor compiling to static objects.

SHCCCOMBTR
If set, the string displayed when a C source file is compiled to a shared object file. If not set, then $SHCCCOM(the
command line) is displayed. See a'so $CCCOMBTR for compiling to static objects.

env = Environnment (SHCCCOMSTR = " Conpi | i ng shared object $TARGET")

SHCCFLAGS
Options that are passed to the C and C++ compilers to generate shared-library objects. See also $CCFLAGS for
compiling to static objects.

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects. See aso $CFLAGS
for compiling to static objects.

SHCXX
The C++ compiler used for generating shared-library objects. See also $CXX for compiling to static objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line. See al'so $CXXCOM
for compiling to static objects.

SHCXXCOMBTR
If set, the string displayed when a C++ source file is compiled to a shared object file. If not set, then $SHCXXCOM
(the command line) is displayed. See also $CXXCOMSTR for compiling to static objects.

env = Environnment ( SHCXXCOMSTR = " Conpi | i ng shared obj ect $TARGET")
SHCXXFLAGS

Options that are passed to the C++ compiler to generate shared-library objects. See also $CXXFLAGS for
compiling to static objects.

Iy
=== SCONS 244



SHDC
The name of the compiler to use when compiling D source destined to be in a shared objects. See also $DC for
compiling to static objects.

SHDCOM
The command line to use when compiling code to be part of shared objects. See also $DCOMfor compiling to
static objects.

SHDCOVBTR
If set, the string displayed when a D source file is compiled to a (shared) object file. If not set, then $SHDCOM
(the command line) is displayed. See also $DCOMSTR for compiling to static objects.

SHDLI BVERSI ONFLAGS
Extra flags added to $SHDLI NKCOMwhen building versioned Shar edLi br ar y. These flags are only used
when $SHLI BVERSI ONiis set.

SHDLI NK
The linker to use when creating shared objects for code bases include D sources. See also $DLI NK for linking
static objects.

SHDL I NKCOM
The command line to use when generating shared objects. See also $DLI NKCOMfor linking static objects.

SHDLI NKFLAGS
The list of flags to use when generating a shared object. See also $DLI NKFLAGS for linking static objects.

SHEL L
A string naming the shell program that will be passed to the $SPAWN function. See the $SPAWN construction
variable for more information.

SHELL_ENV_GENERATORS
A hook allowing the execution environment to be modified prior to the actual execution of acommand line from
an action viathe spawner function defined by $SPAVN. Allows substitution based on targets and sources, as well
as values from the construction environment, adding extra environment variables, etc.

The value must be alist (or other iterable) of functions which each generate or alter the execution environment
dictionary. The first function will be passed a copy of the initial execution environment (3ENV in the current
construction environment); the dictionary returned by that function is passed to the next, until the iterable is
exhausted and the result returned for use by the command spawner. The original execution environment is not
modified.

Each function provided in $SHELL_ENV_GENERATORS must accept four arguments and return a dictionary:
env is the construction environment for this action; t ar get is the list of targets associated with this action;
sour ce is the list of sources associated with this action; and shel | _env is the current dictionary after
iterating any previous $SHELL_ENV_GENERATCRS functions (this can be compared to the original execution
environment, which isavailableasenv[ ' ENV' ], to detect any changes).

Example:

def custom shell env(env, target, source, shell _env):
"""custom ze shell _env if desired
if str(target[0]) == 'special _target':
shel | _env[' SPECI AL_VAR | = env.subst (' SOVE VAR , target=target, source=source)
return shell _env

Iy
=== SCONS 245



env[ " SHELL ENV_GENERATORS'] = [custom shell _env]

Available since 4.4

SHFO3
The Fortran 03 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF03 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHFO3COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHFO3COMif you need to use a specific command line for Fortran 03 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHFO3COVSBTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file. If not set, then
$SHFO3COMor $SHFORTRANCOM (the command line) is displayed.

SHFO3FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHFO3FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHFO3PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO3FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO3PPCOMIf you need to use a specific
C-preprocessor command line for Fortran 03 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO3PPCOMSTR
If set, the string displayed when aFortran 03 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF03PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF08
The Fortran 08 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHF08COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHFO8COMif you need to use a specific command line for Fortran 08 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHFO8COMBTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file. If not set, then
$SHFO8COMor $SHFORTRANCOM (the command line) is displayed.

SHFO8FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHFOBFLAGS if you need to define specific user options for Fortran 08 files. You should normally set the

Iy
=== SCONS 246



$FORTRANCOVVONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHFO8PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO8FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO8PPCOMif you need to use a specific
C-preprocessor command line for Fortran 08 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO8PPCOVSTR
If set, the string displayed when aFortran 08 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF08PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COMif you need to use a specific command line for Fortran 77 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHF77COVSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file. If not set, then
$SHF77COMor $SHFORTRANCOM(the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF77PPCOMif you need to use a specific
C-preprocessor command line for Fortran 77 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOVBTR
If set, the string displayed when aFortran 77 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF7 7 PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COMif you need to use a specific command line for Fortran 90 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

Iy
=== SCONS 247



SHF90COMSTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file. If not set, then
$SHF90COMor $SHFORTRANCOM(the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHFIOFLAGS if you need to define specific user options for Fortran 90 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFOOFLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF90PPCOMif you need to use a specific
C-preprocessor command line for Fortran 90 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOVSTR
If set, the string displayed when aFortran 90 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF90PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COMif you need to use a specific command line for Fortran 95 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHF95COMSTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file. If not set, then
$SHFI5COMor $SHFORTRANCOM(the command line) is displayed.

SHFI5FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHFISFLAGS if you need to define specific user options for Fortran 95 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO5FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF95PPCOMIf you need to use a specific
C-preprocessor command line for Fortran 95 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF95PPCOVBTR
If set, the string displayed when aFortran 95 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF95PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

Iy
=== SCONS 248



SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file. By default, any options
specified in the $SHFORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS construction
variables are included on this command line. See also $FORTRANCOM

SHFORTRANCOVSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file. If not set, then
$SHFORTRANCOM (the command line) is displayed.

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the
file through the C preprocessor. By default, any options specified in the $SHFORTRANFLAGS, $CPPFLAGS,
$ CPPDEFFLAGS, $ FORTRANMODFLAG, and $ FORTRANI NCFLAGS construction variables are included
on this command line. See also $SHFORTRANCOM

SHFORTRANPPCOVSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLI BEM TTER
Contains the emitter specification for the Shar edLi br ary builder. The manpage section "Builder Objects’
contains general information on specifying emitters.

SHLI BNOVERSI ONSYMLI NKS
Instructsthe Shar edLi br ar y builder to not create symlinks for versioned shared libraries.

SHLI BPREFI X
The prefix used for shared library file names.

_SHLI BSONAMVE
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by Shar edLi br ar y builder when the linker tool supports SONAME (e.g. gnul i nk).

SHLI BSUFFI X
The suffix used for shared library file names.

SHLI BVERSI ON
When this construction variable is defined, a versioned shared library is created by the Shar edLi brary
builder. Thisactivatesthe$_SHLI BVERSI ONFLAGS and thus modifiesthe $SHLI NKCOMas required, adds the
version number to the library name, and creates the symlinks that are needed. $SHL1 BVERSI ON versions should
exist as alpha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example
$SHLI BVERSI ONvaluesinclude'1', '1.2.3', and '1.2.gitaa412c8b'".

_SHLI BVERSI ONFLAGS
This macro automatically introduces extra flags to $SHLI NKCOMwhen building versioned Shar edLi br ary
(that is when $SHLI BVERSI ON is set). _ SHLI BVERSI ONFLAGS usually adds $SHLI BVERSI ONFLAGS
and some extra dynamically generated options (such as - W, - soname=$_SHL| BSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLI BVERSI ONFLAGS
Extraflags added to $SHLI NKCOMwhen building versioned Shar edLi br ar y. These flags are only used when
$SHLI BVERSI ONis set.

Iy
=== SCONS 249



SHLI NK
The linker for programs that use shared libraries. See also $LI NK for linking static objects.

On POSIX systems (those using the | i nk tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects acompiler driver matching the type of sourcefilesin use. So for example, if you
set $SHCXX to aspecific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

SHLI NKCOM
The command line used to link programs using shared libraries. See also $L1 NKCOMfor linking static objects.

SHLI NKCOVBTR
The string displayed when programs using shared libraries are linked. If thisis not set, then $SHLI NKCOM (the
command line) is displayed. See also $L1 NKCOMBTR for linking static objects.

env = Environnment (SHLI NKCOVBTR = "Li nki ng shared $TARGET")

SHLI NKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain- | (or similar) options for linking with the libraries listed in $L1 BS, nor - L (or similar) include search
path options that scons generates automatically from $LI BPATH. See$_ LI BFLAGS above, for the variable that
expandsto library-link options, and $_ LI BDI RFLAGS above, for the variable that expandsto library search path
options. See also $LI NKFLAGS for linking static objects.

SHOBJPREFI X
The prefix used for shared object file names.

SHOBJ SUFFI X
The suffix used for shared object file names.

SONAMVE
Variable used to hard-code SONAME for versioned shared library/loadable module.

env. SharedLi brary('test', '"test.c', SHLIBVERSION="0.1.2', SONAME='Ili btest.so0.2")
Thevariableis used, for example, by gnul i nk linker tool.

SOURCE
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOURCE_URL
The URL (web address) of the location from which the project wasretrieved. Thisisused tofill inthe Sour ce:
field in the controlling information for Ipkg and RPM packages.

See the Package builder.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOVERSI ON
This will construct the SONAME using on the base library name (t est in the example below) and use specified
SOVERSI ONto create SONAME.

Iy
=== SCONS 250



env. SharedLi brary('test', 'test.c', SHLIBVERSION='0.1.2', SOVERSI ON='2')
The variableis used, for example, by gnul i nk linker tool.

In the example above SONAME would be |i bt est.so.2 which would be a symlink and point to
libtest.so.0.1.2

SPAWN
A command interpreter function that will be called to execute command line strings. The function must accept
five arguments:

def spawn(shell, escape, cnd, args, env):

shel | isastring naming the shell program to use, escape isafunction that can be called to escape shell special
characters in the command line, cnd is the path to the command to be executed, ar gs holds the arguments to
the command and env isadictionary of environment variables defining the execution environment in which the
command should be executed.

STATI C_AND_SHARED OBJECTS_ARE_THE_SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not
check for linking static objectsinto a shared library.

SUBST_DI CT
The dictionary used by the Substfil e or Textfil e builders for substitution values. It can be anything
acceptable tothedi ct () constructor, so in addition to adictionary, lists of tuples are also acceptable.

SUBSTFI LEPREFI X
The prefix used for Subst f i | e file names, an empty string by default.

SUBSTFI LESUFFI X
The suffix used for Subst f i | e file names, an empty string by default.

SUMVARY
A short summary of what the project is about. This is used to fill in the Sunmary: field in the controlling
information for Ipkg and RPM packages, and asthe Descri pti on: fieldin MSI packages.

See the Package builder.

SW G
The name of the SWIG compiler to use.

SW GCFI LESUFFI X
The suffix that will be used for intermediate C source files generated by SWIG. The default valueis' _wr ap
$CFI LESUFFI X' - that is, the concatenation of the string _wr ap and the current C suffix $CFl LESUFFI X.
By default, thisvalueisused whenever the - c++ option isnot specified as part of the $SW GFLAGS construction
variable.

SW GCOM
The command line used to call SWIG.

SW GCOMBTR
The string displayed when calling SWIG. If thisis not set, then $SW GCOM(the command line) is displayed.

SW GCXXFI LESUFFI X
The suffix that will be used for intermediate C++ source files generated by SWIG. The default value is
" wr ap$CXXFI LESUFFI X' - that is, the concatenation of the string _wr ap and the current C++ suffix

Iy
=== SCONS 251



$CXXFI LESUFFI X. By default, this value is used whenever the - c++ option is specified as part of the
$SW GFLAGS construction variable.

SW GDI RECTORSUFFI X
The suffix that will be used for intermediate C++ header files generated by SWIG. These are only generated for
C++ code when the SWIG 'directors feature isturned on. The default valueis_wr ap. h.

SW GFLAGS
General options passed to SWIG. Thisiswhere you should set the target language (- pyt hon, - per| 5, -tcl,
etc.) and whatever other options you want to specify to SWIG, such as the - c++ to generate C++ code instead
of C Code.

_SW G NCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specifying
directories to be searched for included files. The value of $ SW G NCFLAGS is created by respectively
prepending and appending $SW G NCPREFI X and $SW G NCSUFFI X to the beginning and end of each
directory in $SW GPATH.

SW G NCPREFI X
The prefix used to specify an include directory on the SWIG command line. This will be prepended to the
beginning of each directory in the $SW GPATH construction variable when the $_SW G NCFLAGS variableis
automatically generated.

SW G NCSUFFI X
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SW GPATH construction variable when the $_ SW G NCFLAGS variableis automatically
generated.

SW GOUTDI R
Specifies the output directory in which SWIG should place generated language-specific files. This will be used
by SCons to identify the files that will be generated by the SWIG call, and trandated intotheswi g - out di r
option on the command line.

SW GPATH
The list of directories that SWIG will search for included files. SCons SWIG implicit dependency scanner will
search these directories for include files. The default value is an empty list.

Don't explicitly put include directory arguments in $SW GFLAGS the result will be non-portable and the
directorieswill not be searched by the dependency scanner. Note: directory namesin $SW GPATHwill belooked-
up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use atop-relative path (#):

env = Environment (SW GPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environnment (SW GPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ SW G NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$SW G NCPREFI X and $SW G NCSUFFI X construction variables to the beginning and end of each directory
in $SW GPATH. Any command lines you define that need the SWIGPATH directory list should include
$_SW d NCFLAGS:

Iy
=== SCONS 252



env = Environnent (SW GCOVE"ny_swi g -0 $TARGET $_SW A NCFLAGS $SOURCES")

SW GVERSI ON
The detected version string of the SWIG tool.

TAR
Thetar archiver.

TARCOM
The command line used to call the tar archiver.

TARCOVSTR
The string displayed when archiving files using the tar archiver. If thisis not set, then $TARCOM (the command
line) is displayed.

env = Environnment (TARCOVSTR = "Archi vi ng $TARGET")

TARFLAGS
General options passed to the tar archiver.

TARGET
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Subgtitution" for more information).

TARGET_ARCH
The name of the hardware architecture that objects created using this construction environment should target. Can
be set when creating a construction environment by passing as a keyword argument in the Envi r onnment call.

On the wi n32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. If avalueis not specified, will be set to the same value as $HOST _ARCH.
Changing the value after the environment isinitialized will not cause thetool to be reinitialized. Compiled objects
will bein the target architecture if the compilation system supports generating for that target. The latest compiler
which can fulfill the requirement will be selected, unless a different version is directed by the value of the
$MSVC_VERSI ON construction variable.

On the win32/msvc combination, valid target arch values are x86, ar m i 386 for 32-bit targets and and64,
ar nb4, x86_64 and i a64 (Itanium) for 64-bit targets. For example, if you want to compile 64-bit binaries,
you would set TARGET_ARCH=' x86_64" when creating the construction environment. Note that not all target
architectures are supported for all Visua Studio / MSVC versions. Check the relevant Microsoft documentation.

$TARCGET _ARCHis not currently used by other compilation tools, but the option is reserved to do so in future

TARCGET_OS
The name of the operating system that objects created using this construction environment should target. Can be
set when creating a construction environment by passing as a keyword argument in the Envi r onment call;.

$TARGET_GSisnot currently used by SCons but the option is reserved to do so in future

TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARSUFFI X
The suffix used for tar file names.

Iy
=== SCONS 253



TEMPFI LE
A callable object used to handle overly long command line strings, since operations which call out to a shell
will fail if the line is longer than the shell can accept. This tends to particularly impact linking. The tempfile
object stores the command line in a temporary file in the appropriate format, and returns an alternate command
line so the invoked tool will make use of the contents of the temporary file. If you need to replace the default
tempfile object, the callable should take into account the settings of $MAXLI NELENGTH, $TEMPFI LEPREFI X,
$TEMPFI LESUFFI X, $TEMPFI LEARGIO N, $TEMPFI LEDI Rand $TEMPFI LEARGESCFUNC.

TEMPFI LEARGESCFUNC
Thedefault argument escapefunctionisSCons. Subst . quot e_spaces. If you need to apply extraoperations
on a command argument (to fix Windows slashes, normalize paths, etc.) before writing to the temporary file,
you can set the $TEMPFI LEARGESCFUNC variable to a custom function. Such a function takes a single string
argument and returns a new string with any modifications applied. Example:

i mport sys
i mport re
from SCons. Subst i nport quote_spaces

W NPATHSEP_RE = re.conpile(r"\\([AM\""\\]|$)")

def tenpfile_arg esc func(arg):
arg = quote_spaces(arQg)
if sys.platform!= "w n32":
return arg
# GCC requires doubl e Wndows sl ashes, let's use UNI X separ at or
return WNPATHSEP_RE. sub(r"/\ 1", arg)

env[ " TEMPFI LEARGESCFUNC'] = tenpfile_arg _esc_func

TEMPFI LEARGIO N
The string to use to join the arguments passed to STEMPFI LE when the command line exceeds the limit set by
$MAXLI NELENGTH. The default value is a space. However for MSVC, MSLINK the default is aline separator
asdefined by 0s. | i nesep. Note thisvalueis used literally and not expanded by the subst logic.

TEMPFI LEDI R
The directory to create the long-lines temporary filein.

TEMPFI LEPREFI X
The prefix for the name of the temporary file used to store command lines exceeding $MAXLI NELENGTH. The
default prefix is' @ , which worksfor the Microsoft and GNU toolchains on Windows. Set this appropriately for
other toolchains, for example' - @ for the diab compiler or' - vi a' for ARM toolchain.

TEMPFI LESUFFI X
The suffix for the name of the temporary file used to store command lines exceeding $MAXLI NELENGTH. The
suffix should include the dot (*.") if oneiswanted asit will not be added automatically. The default is. | nk.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOVBTR

The string displayed when calling the TeX formatter and typesetter. If thisisnot set, then $TEXCOM(the command
line) is displayed.

Iy
=== SCONS 254



env = Environnent (TEXCOMSTR = "Bui |l di ng $TARGET from TeX i nput $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXI NPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFI LEPREFI X
The prefix used for Text f i | e file names, an empty string by default.

TEXTFI LESUFFI X
The suffix used for Text f i | e filenames; . t xt by default.

TOOLS
A list of the names of the Tool specifications that are part of this construction environment.

UNCHANGED SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

UNCHANGED TARGETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Subgtitution” for more information).

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor : field in the
controlling information for RPM packages, and the Manuf act ur er : field in the controlling information for
MSI packages.

Seethe Package builder.

VERSI ON
The version of the project, specified as a string.

See the Package builder.

VSWHERE
Specify the location of vswher e. exe.

The vswher e. exe executable is distributed with Microsoft Visual Studio and Build Tools since the 2017
edition, but is also available standalone. It provides full information about installations of 2017 and later editions.
With the - | egacy argument, vswher e. exe can detect installations of the 2010 through 2015 editions with
limited data returned. If VSWHERE is set, SCons will use that location.

Otherwise SCons will look in the following locations and set VSWHERE to the path of the first vswher e. exe
located.

* Orograntil es(x86)% M crosoft Visual Studio\lnstaller
* 9rograntil es% M crosoft Visual Studio\lnstaller
* %Chocol ateylnstall % bin

Note that VSWHERE must be set at the same time or prior to any of nsvc, nsvs , and/or nsl i nk Tool being
initialized. Either set it asfollows

Iy
=== SCONS 255



env = Environment (VSWHERE=' c: / ny/ pat h/ t o/ vswhere')

or if your construction environment is created specifying an empty tools list (or alist of tools which omits all of
default, msvs, msvc, and mslink), and also beforeenv. Tool iscalled to ininitialize any of those tools:

env = Environnent (tool s=[])

env[' VSWHERE'] = r'c:/ny/vswhere/install/location/vswhere. exe'
env. Tool (" msvc')

env. Tool (" msl i nk")

env. Tool (" mBvsS')

W NDONS_EMBED_MANI FEST
Set to Tr ue to embed the compiler-generated manifest (normally ${ TARGET} . mani f est ) into al Windows
executables and DLLs built with this environment, as a resource during their link step. This is done using $MT
and $MTEXECOMand $MI'SHLI BCOM See also $W NDOWS_ | NSERT_MANI FEST.

W NDOWE_| NSERT_DEF
If set to true, alibrary build of aWindowsshared library (. di | file) will include areference to the corresponding
module-definition file at the same time, if amodul e-definition fileis not already listed asabuild target. The name
of the module-definition file will be constructed from the base name of the library and the construction variables
$W NDOWSDEFSUFFI X and $W NDOWSDEFPREFI X. The default is to not add a module-definition file. The
module-definition file is not created by this directive, and must be supplied by the devel oper.

W NDOWS_| NSERT_MANI FEST
If set to true, scons will add the manifest file generated by Microsoft Visual C++ 8.0 and later to the target
list so SCons will be aware they were generated. In the case of an executable, the manifest file name is
constructed using $W NDOASPROGVANI FESTSUFFI X and $W NDOWSPROGVANI FESTPREFI X. Inthe case
of a shared library, the manifest file name is constructed using $W NDOASSHLI BMANI FESTSUFFI X and
$W NDOWSSHLI BMANI FESTPREFI X. See also $W NDOW5s_EMBED MANI FEST.

W NDOWSDEFPREFI X
The prefix used for aWindows linker module-definition file name. Defaults to empty.

W NDOWSDEFSUFFI X
The suffix used for a Windows linker module-definition file name. Defaultsto . def .

W NDOWSEXPPREFI X
The prefix used for Windows linker exports file names. Defaults to empty.

W NDOWSEXPSUFFI X
The suffix used for Windows linker exports file names. Defaultsto . exp.

W NDOWSPROGVANI FESTPREFI X
The prefix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to empty.

W NDOWSPROGVANI FESTSUFFI X
The suffix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to
. mani f est .

W NDOWSSHLI BMANI FESTPREFI X
The prefix used for shared library manifest files generated by Microsoft Visual C/C++. Defaults to empty.

W NDOWESHL I BMANI FESTSUFFI X
The suffix used for shared library manifest files generated by Microsoft Visual C/C++. Defaultsto . mani f est.

Iy
=== SCONS 256



X_| PK_DEPENDS
Thisisused to fill inthe Depends: field in the controlling information for |pkg packages.

See the Package builder.

X_| PK_DESCRI PTI ON
Thisis used to fill in the Descri pti on: field in the controlling information for Ipkg packages. The default
vaueis“$SUMVARY\n$DESCRI PTI ON’

X | PK_MAI NTAI NER
Thisisused to fill inthe Mai nt ai ner : field in the controlling information for |pkg packages.

X IPK_ PRICRI TY
Thisisusedtofill inthePri ori ty: fieldinthe controlling information for | pkg packages.

X_| PK_SECTI ON
Thisisusedto fill inthe Sect i on: field in the controlling information for |pkg packages.

X_MBI _LANGUAGE
Thisisused to fill inthe Language: attribute in the controlling information for MSI packages.

See the Package builder.

X_MBI _LI CENSE_TEXT
Thetext of the softwarelicensein RTF format. Carriage return characterswill bereplaced with the RTF equivalent
\\par.

See the Package builder.

X_NMS| _UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
Thisisused to fill inthe Aut oReqPr ov: fieldinthe RPM . spec file.

See the Package builder.

X RPM BUI LD
internal, but overridable

X_RPM BUI LDREQUI RES
Thisisused to fill inthe Bui | dRequi r es: fieldinthe RPM . spec file. Note this should only be used on a
host managed by rpm as the dependencies will not be resolvable at build time otherwise.

X_RPM BUI LDROOT
internal, but overridable

X RPM CLEAN
internal, but overridable

X_RPM_CONFLI CTS
Thisisused tofill intheConf | i cts: fieldinthe RPM . spec file.

X_RPM _DEFATTR
Thisvalueis used as the default attributes for the files in the RPM package. The default valueis*“ (-,root,root)”.

X_RPM DI STRI BUTI ON
Thisisusedtofill intheDi stri buti on: fieldinthe RPM . spec file.

Iy
=== SCONS 257



X_RPM_EPCCH
Thisisusedtofill inthe Epoch: fieldinthe RPM . spec file.

X_RPM_EXCLUDEARCH
Thisisusedto fill inthe Excl udeAr ch: fieldinthe RPM . spec file.

X RPM _EXLUSI VEARCH
Thisisused to fill inthe Excl usi veAr ch: fieldinthe RPM . spec file.

X_RPM_EXTRADEFS
A list used to supply extra defintions or flags to be added to the RPM . spec file. Each item is added as-is
with a carriage return appended. Thisis useful if some specific RPM feature not otherwise anticipated by SCons
needs to be turned on or off. Noteif this variable is omitted, SCons will by default supply the value' %gl obal
debug package % ni |l }' todisabledebug package generation. To enable debug package generation, include
this variable set either to None, or to a custom list that does not include the default line. Added in version 3.1.

env. Package(
NAME="f 00",

X_RPM _EXTRADEFS=[
"0gefi ne _unpackaged files term nate build 0"
"0gefine _mssing _doc files term nate build 0"
] ’
)

X_RPM_GROUP
Thisisused tofill inthe Gr oup: fieldinthe RPM . spec file.

X RPM GROUP_I ang
Thisisused tofill inthe G- oup( | ang) : fieldinthe RPM . spec file. Notethat | ang isnot literal and should
be replaced by the appropriate language code.

X_RPM | CON
Thisisusedtofill inthel con: fieldinthe RPM . spec file.

X _RPM | NSTALL
internal, but overridable

X_RPM_PACKAGER
Thisisused tofill inthe Packager : fieldinthe RPM . spec file

X_RPM POSTI NSTALL
Thisisused to fill inthe %post : sectioninthe RPM . spec file.

X_RPM _POSTUNI NSTALL
Thisisused to fill inthe %post un: sectioninthe RPM . spec file.

X RPM PREFI X
Thisisusedtofill inthe Pr ef i x: fieldinthe RPM . spec file.

X_RPM _PREI NSTALL
Thisisusedto fill inthe %pr e: sectioninthe RPM . spec file.

X RPM PREP
internal, but overridable

Iy
=== SCONS 258



X_RPM _PREUNI NSTALL
Thisisused to fill inthe %pr eun: sectioninthe RPM . spec file.

X_RPM_PROVI DES
Thisisusedto fill inthe Pr ovi des: fieldinthe RPM . spec file.

X_RPM_REQUI RES
Thisisusedto fill inthe Requi r es: fieldinthe RPM . spec file.

X_RPM_SERI AL
Thisisusedtofill inthe Seri al : fieldinthe RPM . spec file.
X_RPM_URL
Thisisusedtofill intheUr | : fieldinthe RPM . spec file.
XCETTEXT
Path to xgettext(1) program (found viaDet ect () ). Seexget t ext tool and POTUpdat e builder.
XGETTEXTCOM
Complete xgettext command line. See xget t ext tool and POTUpdat e builder.
XGETTEXTCOVETR
A string that is shown when xgettext(l) command is invoked (default: '', which means "print

SXGETTEXTCOM'). See xget t ext tool and POTUpdat e builder.

_XGETTEXTDOVAI N
Internal  "macro”. Generates xgettext domain name form source and target (default:
" ${ TARGET. fi | ebase}").

XGETTEXTFLAGS
Additional flags to xgettext(1). Seexget t ext tool and POTUpdat e builder.

XCGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools users know this as POTFI LES. i n so they
will inmost cases set XGETTEXTFROVE" POTFI LES. i n" here. The $XGET TEXTFROMfiles have same syntax
and semantics as the well known GNU POTFI LES. i n. Seexget t ext tool and POTUpdat e builder.

_XCGETTEXTFROVFLAGS
Internal "macro”. Genrateslist of - D<di r > flags from the $XCETTEXTPATH list.

XCGETTEXTFROVPREFI X
Thisflag is used to add single $XGETTEXTFROMfile to xgettext(1)'s commandline (default: * - f' ).

XGETTEXTFROVBUFFI X
(default: ' ')

XGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: [ ] ).

Note

This variable works only together with $XGETTEXTFROM
Seealso xget t ext tool and POTUpdat e builder.

_XGETTEXTPATHFLAGS
Internal "macro”. Generateslist of - f <f i | e> flags from $XGETTEXTFROM

Iy
=== SCONS 259



XGETTEXTPATHPREFI X
Thisflag is used to add single search path to xgettext(1)'s commandline (default; ' - D' ).

XCGETTEXTPATHSUFFI X
(default: ' ')

YACC
The parser generator.

YACC_GRAPH_FI LE
If supplied, write a graph of the automaton to afile with the name taken from this variable. Will be emitted as a
- - gr aph= command-line option. Use thisin preference to including - - gr aph=in $YACCFLAGS directly.

YACC_HEADER FI LE
If supplied, generate a header file with the name taken from this variable. Will be emitted as a - - header =
command-line option. Use thisin preference to including - - header = in $YACCFLAGS directly.

YACCCOM
The command line used to call the parser generator to generate a sourcefile.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If thisis not set, then $YACCCOM
(the command line) is displayed.

env = Environnment ( YACCCOVSTR="Yacc' i ng $TARGET from $SOURCES")

YACCFLAGS
General options passed to the parser generator. In addition to passing the value on during invocation, the yacc
tool also examines this construction variable for options which cause additional output files to be generated, and
adds those to the target list.

If a-d option is present, scons assumes that the call will also create a header file with the suffix defined
by $YACCHFI LESUFFI X if the yacc source file ends in a . y suffix, or a file with the suffix defined by
$YACCHXXFI LESUFFI X if theyacc sourcefileendsina. yy suffix.

If a- g option is present, scons assumes that the call will also create a graph file with the suffix defined by
$YACCVCGHI LESUFFI X.

If a- v optionispresent, sconsassumesthat the call will aso create an output debug filewith the suffix . out put .

Also recognized are GNU hison options - - header = and its deprecated synonym - - def i nes=, which is
similar to - d but the output filename is named by the option argument; and - - gr aph=, whichissimilarto - g
but the output filename is named by the option argument.

Notethat files specified by - - header = and - - gr aph= may not be properly handled by SConsin all situations.
Consider using $YACC_HEADER_FI LE and $YACC_GRAPH_FI LE instead.

YACCHFI LESUFFI X
The suffix of the C header file generated by the parser generator when the - d option is used. Note that setting this
variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow
you to specify what suffix the parser generator will use of its own accord. The default valueis. h.

YACCHXXFI LESUFFI X
The suffix of the C++ header file generated by the parser generator when the - d option is used. Note that setting
this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to

Iy
=== SCONS 260



allow you to specify what suffix the parser generator will use of itsown accord. The default valueis. hpp, except
on Mac OS X, where the default is ${ TARGET. suf fi x} . h. because the default bison parser generator just
appends . h to the name of the generated C++ file.

YACCVCGFI LESUFFI X
The suffix of the file containing the VCG grammar automaton definition when the - - gr aph= option is used.
Note that setting this variable does not cause the parser generator to generate aV CG file with the specified suffix,
it exists to allow you to specify what suffix the parser generator will use of its own accord. The default value
is. vcg.

ZIP
The zip compression and file packaging utility.

ZI| P_OVERRI DE_TI MESTAMP
An optional timestamp which overrides the last modification time of the file when stored inside the Zip archive.
Thisis atuple of six values: Year (>= 1980) Month (one-based) Day of month (one-based) Hours (zero-based)
Minutes (zero-based) Seconds (zero-based)

ZI PCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

Z| PCOVPRESSI ON
The conpr essi on flag from the Python zi pfi | e module used by the internal Python function to control
whether the zip archive is compressed or not. The default valueiszi pfi | e. ZI P_DEFLATED, which createsa
compressed zip archive. Thisvalue has no effect if the zi pfi | e module is unavailable.

ZI PCOVSTR
The string displayed when archiving files using the zip utility. If thisis not set, then $ZI PCOM (the command
line or internal Python function) is displayed.

env = Environnent (ZI PCOVSTR = "Zi ppi ng $TARGET")

ZI PFLAGS
General options passed to the zip utility.

ZI PROOT
Anoptional zip root directory (default empty). The filenames stored inthe zip filewill berelativeto thisdirectory,
if given. Otherwise the filenames are relative to the current directory of the command. For instance:

env = Environnent ()
env. Zi p(' foo.zip', 'subdirl/subdir2/filel', Zl PROOT='subdirl")

will produce a zip file f 00. zi p containing a file with the name subdi r 2/ fi | el rather than subdi r 1/
subdir2/filel.

ZI PSUFFI X
The suffix used for zip file names.

Iy
=== SCONS 261



Appendix B. Builders

This appendix contains descriptions of all of the Builders that are potentially available "out of the box" in thisversion
of SCons.

CFi

le()

env.CFi |l ()

Builds a C source file given alex (. | ) or yacc (. y) input file. The suffix specified by the $CFI LESUFFI X
construction variable (. ¢ by default) is automatically added to the target if it is not already present. Example:

# builds foo.c

env.CFile(target = 'foo.c', source = 'foo.l")
# builds bar.c
env.CFile(target = '"bar', source = 'bar.y')

Conmmand()
env.Conmand()

The Conmand "Builder” is actualy a function that looks like a Builder, but takes a required third argument,
which is the action to take to construct the target from the source, used for "one-off" builds where a full builder
is not needed. Thus it does not follow the builder calling rules described at the start of this section. See instead
the Conmrand function description for the calling syntax and details.

Conpi | at i onDat abase()
env.Conpi | ati onDat abase()

Conpi | at i onDat abase is a specia builder which adds a target to create a JSON formatted
compilation database compatible with ¢l ang tooling (see the LLVM specification [https://clang.llvm.org/docy
JSONCompilationDatabase.html]). This database is suitable for consumption by various tools and editors who
can use it to obtain build and dependency information which otherwise would be internal to SCons. The
builder does not require any source files to be specified, rather it arranges to emit information about all of the
C, C++ and assembler source/output pairs identified in the build that are not excluded by the optional filter
$COVPI LATI ONDB_PATH_FI LTER. The target is subject to the usual SCons target selection rules.

If called with no arguments, the builder will default to atarget name of conpi | e_commands. j son.

If called with asingle positional argument, sconswill "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. Thisisthe usual way to call the builder if a non-default target name
is wanted.

If called with either the t ar get = or sour ce= keyword arguments, the value of the argument is taken as the
target name. If called with both, the t ar get = value is used and sour ce= isignored. If called with multiple
sources, the source list will beignored, sincethereisno way to deduce what the intent was; in this case the default
target name will be used.

Note

You must load the conpi | ati on_db tool prior to specifying any part of your build or some source/
output fileswill not show up in the compilation database.

Available since scons 4.0.

CXXFi | e()

env

CXXFi | e()

Builds a C++ source file given a lex (.11) or yacc (.yy) input file. The suffix specified by the
$CXXFI LESUFFI X construction variable (. cc by default) isautomatically added to the target if it isnot already
present. Example;

~

'—‘—' SCONS 262


https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

# builds foo.cc

env. CXXFi |l e(target = 'foo.cc', source = 'foo.ll")
# builds bar.cc
env. CXXFi |l e(target = 'bar', source = 'bar.yy')

DocbookEpub()
env.DocbookEpub()
A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environnent (t ool s=[' dochook'])
env. DocbookEpub(' manual . epub', ' manual . xm ")

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookEpub(' nanual ')

DochookHt m ()
env.DocbookHt i ()
A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environment (t ool s=[' docbhook'])
env. DocbookHt M (' manual . ht ', ' manual . xm ")

or simply

env = Environnent (t ool s=["' dochook'])
env. DocbookHt m (' manual ')

DocbookHt m Chunked()

env.DocbookHt m Chunked()
A pseudo-Builder providing a Docbook toolchain for chunked HTML output. It supports the base. di r
parameter. Thechunkf ast . xsl file (requires"EXSLT") is used as the default stylesheet. Basic syntax:

env = Environnent (t ool s=["' dochook'])
env. DocbookHt ml Chunked(' manual ')

where manual . xm istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m Chunked(' mymanual . html ', 'manual ', xsl='htnl chunk. xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=["' dochook'])
env. DocbookHt m Chunked(' manual ', xsl =" htm chunk. xsl', base dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHt m hel p()
env.DocbookHt m hel p()
A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

Iy
=== SCONS 263



env = Environment (t ool s=[' docbook'])
env. DocbookHt m hel p(* manual ')

where manual . xm istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' mymanual . ht i ', ' nmanual ', xsl='"htnm hel p. xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (tool s=[' dochook'])
env. DocbookHt m hel p(' manual *, xsl='"htmnl hel p. xsl"', base_dir="output/")

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan()
env.DocbookMan()
A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookMan(' manual ')

where manual . xm istheinput file. Note, that you can specify atarget name, but the actual output names are
automatically set from ther ef name entriesin your XML source.

DocbookPdf ()
env.DocbookPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environment (t ool s=[' docbhook'])
env. DocbookPdf (* manual . pdf', ' nanual .xm ")

or simply

env = Environment (t ool s=[' docbook'])
env. DocbookPdf (* manual ')

DocbookSl i desH il ()
env.DocbookSl i desHt m ()
A pseudo-Builder, providing a Dochook toolchain for HTML slides output.

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desHt m (' nanual ')

If youusethetit| efoil.htnl parameter inyour own stylesheetsyou haveto give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environment (tool s=[' dochook'])
env. DocbookSl i desHt m (' mymanual . ht ', ' manual ', xsl='"slideshtm .xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' docbhook'])
env. DocbookSl i desHt m (* manual ', xsl="slideshtm .xsl', base dir="output/")

Iy
=== SCONS 264



Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSl i desPdf ()
env.DocbhookS| i desPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF dlides output.

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desPdf (' manual . pdf', 'manual . xm ')

or simply

env = Environment (t ool s=[' docbook'])
env. DocbookSl i desPdf (' manual ')

DocbookXI ncl ude()
env.DocbookXI ncl ude()
A pseudo-Builder, for resolving XIncludesin a separate processing step.

env = Environnent (t ool s=[' dochook'])
env. DocbookXl ncl ude(' manual _xi ncl uded. xm ', ' manual . xm ")

DocbookXsl t ()
env.DocbookXsl t ()
A pseudo-Builder, applying agiven XSL transformation to the input file.

env = Environment (t ool s=[' docbhook'])
env. DocbookXsl t (' manual _transformed. xm ', 'manual .xm ', xsl="transformxslt')

Note, that this builder requiresthe xs| parameter to be set.

DVI ()

env.DVI ()
Buildsa. dvi filefroma. tex,. | txor. | at exinputfile. If thesourcefilesuffixis. t ex, sconswill examine
the contents of the file; if the string \ docunent ¢l ass or \ docunent st yl e is found, the file is assumed
to beaLaTeX file and the target is built by invoking the $LATEXCOMcommand line; otherwise, the $TEXCOM
command line is used. If the file is a LaTeX file, the DVI builder method will also examine the contents of
the . aux file and invoke the $BI BTEX command line if the string bi bdat a is found, start $MAKEI NDEX to
generate an index if a. i nd fileisfound and will examine the contents . | og file and re-run the SLATEXCOM
command if thelog file saysit is necessary.

The suffix . dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

# builds from aaa.tex

env.DVI (target = 'aaa.dvi', source = 'aaa.tex')

# buil ds bbb. dvi

env. DVI (target = 'bbb', source = 'bbb.ltx")

# builds from ccc. | at ex

env. DVI (target = 'ccc.dvi', source = 'ccc.latex')
Gs()
env.Gs()

A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs, gsos2
and gswin32c are tried.

Iy
=== SCONS 265



env = Environment (tool s=['gs'])
env. Gs(

‘cover.jpg',

' scons-scons. pdf ',

GSFLAGS=" - dNOPAUSE - dBATCH - sDEVI CE=j peg - dFi r st Page=1 -dLast Page=1 -q',
)

Install ()

env.Install ()

Installs one or more source files or directoriesin the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
asastring or as anode returned by a builder.

env.Install (target='"/usr/local/bin', source=['foo', 'bar'])

Note that if target paths chosen for the Install builder (and the related I nstall As and
I nst al | Ver si onedLi b builders) are outside the project tree, such asin the example above, they may not be
selected for "building" by default, sincein the absence of other instructions scons buildstargetsthat are underneath
the top directory (the directory that containsthe SConst r uct file, usualy the current directory). Use command
line targets or the Def aul t function in this case.

Ifthe- - i nst al | - sandbox command lineoptionisgiven, thetarget directory will be prefixed by the directory
path specified. Thisisuseful to test installs without installing to a"live" location in the system.

SeedsoFi ndl nst al | edFi | es. For morethoughtson installation, see the User Guide (particularly the section
on Command-Line Targets and the chapters on Installing Files and on Alias Targets).

I nstall As()

env. nstal |l As()

Installs one or more source files or directories to specific names, allowing changing afile or directory name as
part of theinstallation. It isan error if the target and source arguments list different numbers of files or directories.

env. I nstall As(target="/usr/local/bin/foo",
sour ce='f oo_debug')

env.lnstall As(target=['../lib/libfoo.a', '../lib/libbar.a'],
source=['libFOO a', 'libBAR a'])

Seethenoteunder | nst al | .

I nst al | Ver si onedLi b()
env.l nst al | Ver si onedLi b()
Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on

symlinks of the source library.

env. I nst al | Ver si onedLi b(target="/usr/|ocal/bin/foo
source='1l1ibxyz.1.5.2.s0")

Seethenoteunder | nst al | .

Jar ()

env.Jar ()

Builds a Java archive (. j ar) file from the specified list of sources. Any directories in the source list will be
searched for . cl ass files). Any . j ava filesin the source list will be compiledto . cl ass filesby calling the
Java Builder.

Iy
=== SCONS 266



If the $JARCHDI R value is set, the jar command will change to the specified directory using the - C option. If
$JARCHDI Ris not set explicitly, SCons will use the top of any subdirectory tree in which Java. cl ass were
built by the Java Builder.

If the contents any of the source files begin with the string Mani f est - Ver si on, thefile is assumed to be a
manifest and is passed to the jar command with the moption set.

env. Jar(target = 'foo.jar', source = 'classes')
env. Jar(target = 'bar.jar’,
source = ['barl.java', 'bar2.java'])
Java()
env.Java()

Builds one or more Java class files. The sources may be any combination of explicit . j ava files, or directory
treeswhich will be scanned for . j ava files.

SConswill parse each source. | ava fileto find the classes (including inner classes) defined within that file, and
from that figure out the target . cl ass files that will be created. The class files will be placed underneath the
specified target directory.

SConswill also search each Javafilefor the Java package name, which it assumes can be found on aline beginning
with the string package in the first column; theresulting . cl ass fileswill be placed in a directory reflecting
the specified package name. For example, the file Foo. j ava defining asingle public Foo class and containing
apackage name of sub. di r will generate a corresponding sub/ di r/ Foo. cl ass classfile.

Examples:

env. Java(target='cl asses', source='src')
env. Java(target='cl asses', source=['srcl', 'src2'])
env. Java(target='cl asses', source=['Filel.java', 'File2.java'])

Javasource files can use the native encoding for the underlying OS. Since SCons compilesin ssmple ASCII mode
by default, the compiler will generate warnings about unmappabl e characters, which may lead to errors asthefile
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environment ()
env['ENV' ]['LANG ] = 'en_GB. UTF-8'

JavaH()

env.JavaH()
Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain al of the definitions. The source
can be the names of . cl ass files, the names of . j ava filesto be compiled into . cl ass files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $J AVACLASSDI Risset, either in the environment or in the call to the JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

Examples:

Iy
=== SCONS 267



# builds java _native.h
cl asses = env.Java(target="classdir", source="src")
env. JavaH(t arget ="j ava_native. h", source=cl asses)

# buil ds i ncl ude/ package_foo. h and incl ude/ package_bar. h
env. JavaH(t arget ="i ncl ude", source=["package/foo.cl ass", "package/bar.class"])

# buil ds export/foo.h and export/bar.h

env. JavaH(
target ="export",
source=["cl asses/foo. cl ass", "classes/bar.class"],

JAVACLASSDI R="cl| asses",

Note

Java versions starting with 10.0 no longer use the javah command for generating JNI headers/
sources, and indeed have removed the command entirely (see Java Enhancement Proposa JEP
313 [https.openjdk.java.net/jeps/313]), making this tool harder to use for that purpose. SCons may
autodiscover a javah belonging to an older release if there are multiple Java versions on the system,
which will lead to incorrect results. To use with anewer Java, override the default values of $J AVAH (to
contain the path to thejavac) and $J AVAHFLAGS (to contain at least a- h flag) and note that generating
headers with javac requires supplying source. j ava filesonly, not. cl ass files.

Li brary()
env.Li brary()
A synonym for the St at i cLi br ar y builder method.

Loadabl eModul e()

env.Loadabl eModul e()
Onmost systems, thisisthesameasShar edLi br ar y. OnMac OS X (Darwin) platforms, this createsaloadable
module bundle.

M ()

env.M4()
Builds an output file from an M4 input file. This uses a default $MAFLAGS value of - E, which considers all
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

env. Mi(target = 'foo.c', source = 'foo.c.md')

Moc()

env.Moc()
Builds an output file from a moc input file. moc input files are either header files or C++ files. This builder is
only available after using the tool gt 3. See the $QT3DI R variable for more information. Example:

env. Moc(' foo.h') # generates noc_foo.cc
env. Moc(' foo.cpp') # generates foo.noc

MOFi | es()
env.MOFi | es()
This builder belongsto nsgf nt tool. The builder compiles POfilesto MOfiles.

Example 1. Create pl . no and en. no by compiling pl . po and en. po:

Iy
=== SCONS 268


https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313

# ...
env. MOFi les(['pl', "en'])

Example 2. Compile files for languages defined in LI NGUAS file:

# ...
env. MOFi | es(LI NGUAS FI LE = 1)

Example 3. Create pl . no and en. no by compiling pl . po and en. po plus files for languages defined in
LI NGUASfile:

# ...
env. MOFiles(['pl"', "en'], LINGUAS FILE = 1)

Example 4. Compile files for languages defined in L1 NGUAS file (another version):

# ...
env['LINGUAS FILE'] =1
env. MOFi | es()

MBVSPr oj ect ()
env.MSVSPr oj ect ()
Build a Microsoft Visual C++ project file and solution file.

Builds a C++ project file based on the version of Visua Studio (or to be more precise, of MSBuild) that is
configured: either the latest installed version, or the version specified by $MSVC VERSI ON in the current
construction environment. For Visual Studio 6.0a. dsp fileisgenerated. For Visual Studio versions 2002-2008,
a.vcproj fileis generated. For Visual Studio 2010 and later a . vexpr oj file is generated. Note there
are multiple versioning schemes involved in the Microsoft compilation environment - see the description of
$MBVC_VERSI ON for equivalences. SCons does not know how to construct project files for other languages
(suchas. csproj for C#, . vbproj for Visua Basic or . pypr oj ect for Python)).

For the . vcxproj file, the underlying format is the MSBuild XML Schema, and the details conform
to: https://learn.microsoft.com/en-us/cpp/buil d/reference/vexproj-file-structure [https://learn.microsoft.com/en-
us/cpp/build/reference/vexproj-file-structure]. The generated solution file enables Visual Studio to understand the
project structure, and allows building it using MSBuild to call back to SCons. The project file encodes a toolset
version that has been selected by SCons as described above. Since recent Visual Studio versions support multiple
concurrent toolsets, use $MSVC_VERSI ON to select the desired one if it does not match the SCons default. The
project file aso includes entries which describe how to call SCons to build the project from within Visual Studio
(or from an MSBuild command line). In some situations SCons may generate this incorrectly - notably when
using the scons-local distribution, which is not installed in a way that that matches the default invocation line.
If so, the $SCONS_HOME construction variable can be used to describe the right way to locate the SCons code
so that it can be imported.

By default, a matching solution file for the project is also generated. This behavior may be disabled by specifying
aut o_buil d_sol uti on=0 to the MSVSPr oj ect builder. The solution file can aso be independently
generated by calling the MSVSSol ut i on builder, such as in the case where a solution should describe multiple
projects. See the MBVSSol ut i on description for further information.

The MSVSPr oj ect builder accepts severa keyword arguments describing lists of filenames to be placed into
the project file. Currently, srcs, i ncs, | ocal i ncs, resour ces, and m sc are recognized. The names are
intended to be self-explanatory, but note that the filenames need to be specified as strings, not as SCons File Nodes
(for example if you generate files for inclusion by using the @ ob function, the results should be converted to a

Iy
=== SCONS 269


https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure
https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure
https://learn.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure

list of strings before passing them to MSVSPr oj ect ). Thisisbecause Visual Studio and M SBuild know nothing
about SCons Nodetypes. Each of thefilenamelistsareindividually optional, but at |east one list must be specified
for the resulting project file to be non-empty.

In addition to the above lists of values, the following values may be specified as keyword arguments:

t ar get
The name of the target . dsp or . vcpr oj file. The correct suffix for the version of Visual Studio must
be used, but the $MSVSPRQJECTSUFFI X construction variable will be defined to the correct value (see
example below).

vari ant
The name of this particular variant. Except for Visual Studio 6 projects, this can also be a list of variant
names. These are typically thingslike "Debug" or "Release”, but really can be anything you want. For Visual
Studio 7 projects, they may also specify atarget platform separated from the variant name by a| (vertica
pipe) character: Debug| Xbox. The default target platform isWin32. Multiple callsto MSVSPr oj ect with
different variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

cndar gs
Additional command line arguments for the different variants. The number of cndar gs entries must match
the number of var i ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to al variants.

cppdefi nes
Preprocessor definitions for the different variants. The number of cppdef i nes entries must match the
number of vari ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants. If you don't give this parameter, SCons will use the invoking environment's
$CPPDEFI NES entry for al variants.

cppfl ags
Compiler flagsfor thedifferent variants. If a/ st d: c++flagisfoundthen/ Zc: __cpl uspl us isappended
to the flags if not already found, this ensures that Intellisense uses the / st d: c++ switch. The number of
cppf | ags entriesmust match the number of var i ant entries, or be empty (not specified). If you give only
one, it will automatically be propagated to all variants. If you don't give this parameter, SCons will combine
the invoking environment's $CCFLAGS, $CXXFLAGS, $CPPFLAGS entries for al variants.

cpppat hs
Compiler include paths for the different variants. The number of cpppat hs entries must match the number
of vari ant entries, or be empty (not specified). If you give only one, it will automatically be propagated
to all variants. If you don't give this parameter, SCons will use the invoking environment's $CPPPATH entry
for all variants.

bui | dt ar get
An optiona string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to usein what build variant. The number of bui | dt ar get entriesmust match the number
of vari ant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Qut put field in the resulting Visual C++ project file. If thisis not specified, the default is the same as the
specified bui | dt ar get value.

Note

SCons and Microsoft Visual Studio understand projectsin different ways, and the mapping is sometimes
imperfect:

Iy
=== SCONS 270



Because SCons always executes its build commands from the directory in which the SConst r uct file
is located, if you generate a project file in a different directory than the directory of the SConst r uct
file, userswill not be ableto double-click on thefile namein compilation error messages displayed in the
Visual Studio console output window. This can be remedied by adding the Visual C/C++/ FC compiler
option to the $CCFLAGS variable so that the compiler will print the full path name of any filesthat cause
compilation errors.

If the project fileisonly used to teach the Visual Studio project browser about the filelayout there should
be no issues, However, Visual Studio should not be used to make changes to the project structure, build
options, etc. asthesewill (&) not feed back to the SCons description of the project and (b) belost if SCons
regenerates the project file. The SConscript files should remain the definitive description of the build.

If the project file is used to drive MSBuild (such as selecting "build" from the Visual Studio interface)
you lose the direct control of target selection and command-line options you would have if launching
the build directly from SCons, because these will be hardcoded in the project file to the values specified
in the MSVSPr oj ect call. You can regain some of this control by defining multiple variants, using
multiple MSVSPr oj ect callsto arrange different build targets, arguments, defines, flags and paths for
different variants.

If the build is divided into a solution with multiple MSBuild projects the mapping is further strained. In
this case, it isimportant not to set Visual Studio to do parallel builds, asit will then launch the separate
project builds in parallel, and SCons does not work well if called that way. Instead you can set up the
SCons build for paralel building - see the Set Opt i on function for how to do thiswith num j obs.

Example usage:

barsrcs = [' bar.cpp']

barincs = ['bar.h']

barl ocalincs = [' St dAfx. h']
barresources = ['bar.rc', 'resource.h']
barm sc = [' bar_readne. txt']

dll = env. SharedLi brary(target="bar.dll"', source=barsrcs)
buildtarget = [s for s in dll if str(s).endswith('dlIl")]
env. MBVSPr oj ect (

target='Bar' + env[' MSVSPRQIECTSUFFI X ],

srcs=barsrcs,

i ncs=bari ncs,

| ocal i ncs=barl ocal i ncs,

resour ces=bar r esour ces,

m sc=barm sc

bui | dt ar get =bui | dt ar get ,

vari ant =' Rel ease',

DebugSet ti ngs
A dictionary of debug settings that get written to the . vcproj . user or the . vexpr oj . user file,
depending on the version installed. As for cndar gs, you can specify a DebugSet t i ngs dictionary per
variant. If you give only one, it will be propagated to al variants.

Changed in version 2.4: Added the optional DebugSet t i ngs parameter.

Currently, only Visual Studio v9.0 and Visual Studio version v11 are implemented, for other versions no fileis
generated. To generate the user file, you just need to add aDebugSet t i ngs dictionary to the environment with

Iy
=== SCONS 271



the right parameters for your MSV S version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

# Assum ng you store your defaults in a file
vars = Vari abl es(' vari abl es. py')
msvcver = vars.args.get('vc', '9')

# Check command args to force one M crosoft Visual Studio version
if nmsvcver == '9' or nsvcver == '11':

env = Environment (M5SVC_VERSI ON=nsvcver + '.0', MSVC BATCH=Fal se)
el se:

env = Environmnent ()

AddOpt i on(
"--userfile',
action='store_true',
dest="userfile',
def aul t =Fal se,
hel p="Create Visual Ct+ project file",

)

#
# 1. Configure your Debug Setting dictionary with options you want in the |ist
# of allowed options, for instance if you want to create a user file to |l aunch
# a specific application for testing your dll with Mcrosoft Visual Studio 2008 (v9):
#
V9DebugSet ti ngs = {
"Command' @ ' c:\\myapp\\using\\thisdll.exe",
"WorkingDirectory': "c:\\nyapp\\using\\",
' CommandAr gunents': ' -p password',

# 'Attach':'fal se',
# ' Debugger Type' : ' 3",
# 'Renote':'1',
# ' Renot eMachi ne' : None,
# ' Renot eConmmand’' : None,
# '"HtpUl': None,
# ' PDBPat h' : None,
# ' SQLDebuggi ng' : None,
# 'Environment': '',
# ' Envi ronment Merge' : 'true',
# ' Debugger Fl avor' : None,
# ' MPl RunConmand' : None,
# ' MPl RunArgunents' : None,
# ' MPI RunWor ki ngDi rectory' : None,
# ' Appl i cati onConmand' : None,
# ' Appl i cati onArgunents’': None,
# ' Shi mConmand' : None,
# ' VPl Accept Mbde' : None,
# ' \MPl AcceptFilter': None,
}
N
='=25CoNs 272



2. Because there are a lot of different options depending on the M crosoft
Vi sual Studio version, if you use nore than one version you have to
define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with M crosoft
Vi sual Studio 2012 (v11):

H HOHHH HH

V10DebugSetti ngs = {
' Local Debugger Command' : ' c:\\ myapp\\using\\thisdlIl.exe",
' Local Debugger Wor ki ngDirectory': 'c:\\nyapp\\using\\",
' Local Debugger CommandAr gunents': ' -p password',

' Local Debugger Envi ronnment ' : None,

Debugger Fl avor' : ' W ndowsLocal Debugger ',

Local Debugger Att ach' : None,

Local Debugger Debugger Type' : None,

Local Debugger Mer geEnvi ronment ' : None,

Local Debugger SQLDebuggi ng' : None,

Renot eDebugger Command’ : None,

Renot eDebugger CommandAr gunent s’ : None,

Renot eDebugger Wor ki ngDi rectory' : None,

Renot eDebugger Ser ver Nane' : None,

Renot eDebugger Connecti on' : None,

Renot eDebugger Debugger Type' : None,

Renot eDebugger Att ach' : None,

' Renot eDebugger SQLDebuggi ng' : None,

' Depl oynent Di rectory': None,

" Addi tional Files': None,

' Renot eDebugger Depl oyDebugCppRunti me' : None,

' WebBr owser Debugger Ht t pUr | ' : None,

" WebBr owser Debugger Debugger Type' : None,

" WebSer vi ceDebugger Ht t pUr| ' : None,

" WebSer vi ceDebugger Debugger Type' : None,

" WebSer vi ceDebugger SQLDebuggi ng' : None,

HHHHHHHHHH R H R

}

#
# 3. Select the dictionary you want depending on the version of visual Studio
# Files you want to generate.
#
if not env.GetOption('userfile'):

dbgSetti ngs = None

elif env.get(' MSVC VERSION , None) == '9.0':
dbgSetti ngs = V9DebugSetti ngs

elif env.get(' MSVC VERSION , None) == '11.0":
dbgSetti ngs = V10DebugSetti ngs

el se:

dbgSetti ngs = None

#

# 4. Add the dictionary to the DebugSettings keyword.
#

barsrcs = ['bar.cpp', 'dllmin.cpp', 'stdafx.cpp']

barincs = ['targetver.h']
barl ocal i ncs = [' St dAf x. h']

Iy
=== SCONS 273



barresources = ['bar.rc', 'resource.h']
barm sc = [' ReadMe. t xt ' ]

dl I = env. SharedLi brary(target="bar.dl|l"', source=barsrcs)

env. MBVSPr oj ect (
target='Bar' + env[' MSVSPRQIECTSUFFI X ],
srcs=barsrcs,
i ncs=bari ncs,
| ocal i ncs=barl ocal i ncs,
resour ces=barresour ces,
m sc=barm sc
bui l dtarget=[dlII[0]] * 2,
vari ant =(' Debug| Wn32', ' Rel ease| Wn32'),
cndar gs=f' vc={ msvcver}"',
DebugSetti ngs=(dbgSettings, {}),

MBVSSol ut i on()

env

.M5VSSol uti on()
Build a Microsoft Visual Studio Solution file.

Builds a Visual Studio solution file based on the version of Visua Studio that is configured: either the latest
installed version, or the version specified by $MSVC_VERSI ON in the construction environment. For Visua
Studio 6, a. dswfile is generated. For Visual Studio .NET 2002 and later, it will generate a. sl n file. Note
there are multiple versioning schemes involved in the Microsoft compilation environment - see the description
of SMSVC_VERSI ON for equivalences.

The solution file is a container for one or more projects, and follows the format described at https:/
learn.microsoft.com/en-us/visual studio/extensi bility/internal /sol ution-dot-sin-file  [https://learn.microsoft.com/
en-us/visual studio/extensibility/internal s/sol ution-dot-sin-fil €] .

The following values must be specified:

t ar get
The name of thetarget . dswor . sl n file. The correct suffix for the version of Visual Studio must be used,
but the value $MSVSSOLUTI ONSUFFI X will be defined to the correct value (see example below).

vari ant
The name of this particular variant, or a list of variant names (the latter is only supported for MSVS 7
solutions). These are typically things like "Debug" or "Release”, but really can be anything you want. For
MSVS 7 they may also specify target platform, like this" Debug| Xbox" . Default platform is Win32.

proj ects
A list of project file names, or Project nodes returned by calls to the MSVSPr oj ect Builder, to be placed
into the solution file. Note that these filenames need to be specified as strings, NOT as SCons File Nodes.
This is because the solution file will be interpreted by MSBuild and by Visual Studio, which know nothing
about SCons Node types.

Example Usage:

env. MSVSSol ut i on(
target="Bar" + env["MSVSSOLUTI ONSUFFI X"],

~

=!l=5CoNs 274


https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file

projects=["bar" + env["MSVSPRQIECTSUFFI X"]],
vari ant =" Rel ease",

Ni nj a()

env.Ni nj a()
A specia builder which adds a target to create a Ninja build file. The builder does not require any source files
to be specified.

Note

Thisis an experimental feature. To enable it you must use one of the following methods

# On the conmand |ine
--experi nment al =ni nj a

# O in your SConstruct
Set Option(' experinental', 'ninja')

This functionality is subject to change and/or removal without deprecation cycle.

To use this tool you need to install the Python ninja package, as the tool by default depends on being
abletodoani nport of the package This can be done via:

python -mpip install ninja

If called with no arguments, the builder will default to atarget name of ni nj a. bui | d.

If called with asingle positional argument, sconswill "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. Thisisthe usual way to call the builder if a non-default target name
is wanted.

If called with either the t ar get = or sour ce= keyword arguments, the value of the argument is taken as the
target name. If called with both, the t ar get = value is used and sour ce= isignored. If called with multiple
sources, the sourcelist will beignored, sincethereisno way to deduce what the intent was; in this case the default
target name will be used.

Available since scons 4.2.

hj ect ()
env.bj ect ()
A synonym for the St at i cCbj ect builder method.

Package()

env.Package()
Builds software distribution packages. A package is a container format which includes filesto install along with
metadata. Packaging is optional, and must be enabled by specifying the packagi ng tool. For example:

env = Environment (tool s=['default', 'packaging ])

Iy
=== SCONS 275



SCons can huild packages in a number of well known packaging formats. The target package type may be
selected with the the $PACKAGET YPE construction variable or the - - package-t ype command line option.
The package type may be a list, in which case SCons will attempt to build packages for each type in the list.
Example:

env. Package( PACKAGETYPE=['src_zip', 'src_targz'], ...other args...)

The currently supported packagers are:

nsi Microsoft Installer package

rpm RPM Package Manger package

i pkg Itsy Package Management package

tarbz2 bzip2-compressed tar file

targz gzip-compressed tar file

tarxz xz-compressed tar file

zZip zipfile

src_tarbz2 bzip2-compressed tar file suitable as source to another
packager

src_targz gzip-compressed tar file suitable as source to another
packager

src_tarxz xz-compressed tar file suitable as source to another
packager

src_zip zip file suitable as source to another packager

The file list to include in the package may be specified with the sour ce keyword argument. If omitted,
the Fi ndl nst al | edFi | es function is called behind the scenes to select al files that have an | nst al |,
Install As orl nstall Versi onedLi b Builder attached. If thet ar get keyword argument is omitted, the
target name(s) will be deduced from the package type(s).

The metadata comes partly from attributes of the filesto be packaged, and partly from packaging tags. Tags can be
passed as keyword arguments to the Package builder call, and may a so be attached to files (or more accurately,
Nodes representing files) with the Tag function. Some package-level tags are mandatory, and will lead to errors
if omitted. The mandatory tags vary depending on the package type.

While packaging, the builder uses a temporary location named by the value of the SPACKAGERCOCT variable -
the package sources are copied there before packaging.

Packaging example:

env = Environment (tool s=["default", "packaging"])
env.Install ("/bin/", "ny_progrant)
env. Package(

NAME="f 00",

VERSI ON="1. 2. 3",

PACKAGEVERSI ON=0,

PACKAGETYPE="r pnt',

LI CENSE="gpl ",

SUMVARY="Dbal al al al al ",

DESCRI PTI ON="t hi s should be really really | ong",

Iy
=== SCONS 276



X_RPM GROUP="Appl i cati on/fu",
SOURCE URL="https://foo.org/foo-1.2.3.tar.gz",
)

Inthisexample, thetarget/ bi n/ ny_pr ogr amcreated by thel nst al | call would not be built by default since
it is not under the project top directory. However, since no sour ce is specified to the Package builder, it is
selected for packaging by the default sources rule. Since packaging is done using $PACKAGERCOQOT, no write is
actually done to the system's/ bi n directory, and the target will be selected since after rebasing to underneath
$PACKAGERQOQT it is now under the top directory of the project.

PCH)

env.PCH()
Builds a Microsoft Visual C++ precompiled header. Calling this builder returns alist of two targets. the PCH as
the first element, and the object file as the second element. Normally the object file is ignored. This builder is
only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder is generally used in
conjunction with the $PCH construction variable to force object files to use the precompiled header:

env[' PCH ] = env. PCH(' StdAfx.cpp')[0]

PDF()

env.PDF()
Buildsa. pdf filefroma. dvi input file (or, by extension, a. tex, . | t x, or. | at ex input file). The suffix
specified by the $PDFSUFFI X construction variable (. pdf by default) is added automatically to the target if it
isnot already present. Example:

# builds from aaa.tex

env. PDF(target = 'aaa.pdf', source = 'aaa.tex')
# bui |l ds bbb. pdf from bbb. dvi
env. PDF(target = 'bbb', source = 'bbb.dvi")

PO nit ()

env.PA nit()

This builder belongs to msgi ni t tool. The builder initializes missing PO file(s) if $POAUTO NI T is set. If
$PQAUTOA NI Tisnot set (default), POl ni t printsinstruction for user (that is supposed to be atranslator), telling
how the POfile should beinitialized. In normal projectsyou should not use POl ni t and use POUpdat e instead.
PQOUpdat e chooses intelligently between msgmerge(1) and msginit(1). PO ni t aways uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
abunch of POfiles) or for tests.

Target nodes defined through POl ni t arenot built by default (they'rel gnor edfrom' . ' node) but are added to
special Al i as (' po-creat e' by default). The alias name may be changed through the SPOCREATE_ALI AS
construction variable. All POfiles defined through POl ni t may be easily initialized by scons po-cr eate.
Example 1. Initializeen. po and pl . po from messages. pot :

# ...

env.POnit(['en", "pl']) # nmessages.pot --> [en.po, pl.po]

Example 2. Initializeen. po and pl . po fromf 0o. pot :

# ...

Iy
=== SCONS o77



env.POnit(['en", "pl"], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initidlizeen. po and pl . po fromf 00. pot but using $POTDOMAI N construction variable:

# ...
env.POnit(['en'", "pl'], POTDOMAIN='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize POfiles for languages defined in L1 NGUAS file. The fileswill be initialized from template
nmessages. pot:

# ...
env. PO nit (LINGUAS FILE = 1) # needs 'LINGUAS file

Example5. Initializeen. po and pl . pl POfilesplusfilesfor languages defined in LI NGUAS file. Thefileswill
beinitialized from template messages. pot :

# ...
env.POnit(['en", "pl'"], LINGUAS FILE = 1)

Example 6. Y ou may preconfigure your environment first, and then initialize POfiles:

# ...

env[' POAUTONT ] =1
env['LINGUAS FILE'] =1
env[' POTDOMAIN' ] = 'foo'
env. PO nit ()

which has same efect as:

# ...
env. PO nit (POAUTONIT = 1, LINGUAS FILE = 1, POTDOMAIN = 'fo0')

Post Scri pt ()

env.Post Scri pt ()
Buildsa. ps filefrom a. dvi input file (or, by extension, a. tex, . | t x, or . | at ex input file). The suffix
specified by the $PSSUFFI X construction variable (. ps by default) is added automatically to the target if it is
not already present. Example:

# builds from aaa.tex

env. Post Script(target = 'aaa.ps', source = 'aaa.tex')
# bui |l ds bbb. ps from bbb. dvi
env. Post Script(target = 'bbb', source = 'bbb.dvi")

POTUpdat e()

env.POTUpdat e()
The builder belongsto xget t ext tool. The builder updates target POT file if exists or creates oneif it doesn't.
The node is not built by default (i.e. itis| gnor edfrom' . "), but only on demand (i.e. when given POT fileis
required or when special aias isinvoked). This builder adds its targe node (messages. pot , say) to a specia
alias (pot - updat e by default, see $POTUPDATE_ALI AS) so you can update/create them easily with scons
pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

Iy
=== SCONS 278



Note

You may see xgettext(1l) being invoked by the xgett ext tool even if there is no real change in
internationalized messages (so the POT fileis not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConst r uct script there:

# SConstruct in 'po/' subdir

env = Environment( tools = ['default', 'xgettext'] )
env. POTUpdate(["foo'], ['../a.cpp', '../b.cpp'])
env. POTUpdate(["bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

user @ost:$ scons # Does not create foo.pot nor bar. pot
user @ost: $ scons foo. pot # Updates or creates foo. pot

user @ost:$ scons pot-update # Updates or creates foo.pot and bar. pot
user @ost:$ scons -c # Does not cl ean foo.pot nor bar. pot.

the results shall be as the comments above say.

Example 2. The POTUpdat e builder may be used with no target specified, in which case default target
nessages. pot will beused. The default target may also be overridden by setting $POTDOMAI N construction
variable or providing it as an override to POTUpdat e builder:

# SConstruct scri pt

env = Environment( tools = ["default', 'xgettext'] )

env[' POTDOVAIN ] = "foo"

env. POTUpdat e(source = ["a.cpp”, "b.cpp"]) # Creates foo.pot

env. POTUpdat e( POTDOVAI N = "bar", source = ["c.cpp", "d.cpp"]) # and bar. pot

Example 3. The sources may be specified within separate file, for example POTFI LES. i n:

# POTFILES.in in 'po/' subdirectory
..la.cpp

../ b.cpp

# end of file

The name of the file (POTFI LES. i n) containing the list of sourcesis provided via $XGETTEXTFROM
# SConstruct file in 'po/' subdirectory
env = Environment( tools = ["default', 'xgettext'] )

env. POTUpdat e( XGETTEXTFROM = ' POTFI LES. in")

Example 4. Y ou may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
filesa. cpp,b. cpp,po/ SConst ruct ,po/ POTFI LES. i n. Thenyour POT-related files could | ook asbel ow:

Iy
=== SCONS 279



# POTFILES.in in 'po/' subdirectory

a. cpp

b. cpp
# end of file

# SConstruct file in 'po/' subdirectory
env = Environnent( tools = ['default', 'xgettext'] )
env. POTUpdat e( XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH='../"')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dirl",
"dir2', ...].Theorderinthelist determinesthe search order of sourcefiles. The path to the first file found
is used.

Let'screate 0/ 1/ po/ SConst r uct script:

# SConstruct file in '0/1/po/' subdirectory
env = Environnment( tools = ['default', 'xgettext'] )
env. POTUpdat e( XGETTEXTFROM = ' POTFI LES. i n', XGETTEXTPATH=['../', '../[../"'])

and 0/ 1/ po/ POTFI LES. i n:

# POTFILES.in in '0/1/po/' subdirectory

a.cpp
# end of file

Writetwo * . cpp files, thefirst oneis0/ a. cpp:

/* 0/a.cpp */
gettext("Hello from../../a.cpp")

and the secondis0/ 1/ a. cpp:

/* 0/ 1/ a.cpp */
gettext("Hello from../a.cpp")

thenrunscons. You'll obtain0/ 1/ po/ nessages. pot withthemessage"Hel l o from. ./ a. cpp".When
you reverse order in $XGETTEXTFOM i.e. when you write SConscript as

# SConstruct file in "0/ 1/ po/' subdirectory
env = Environment( tools = ['default', 'xgettext'] )
env. POTUpdat e( XGETTEXTFROM = ' POTFI LES. i n', XGETTEXTPATH=['../../', '"../'])

thenthenessages. pot will containnsgid "Hello from../../a.cpp" lineandnotnmsgi d "Hel | o
from../a.cpp".

PQOUpdat e()

env.PQUpdat e()
The builder belongs to nsgner ge tool. The builder updates POfiles with msgmer ge(1), or initializes missing
POfiles as described in documentation of nsgi ni t tool and PO ni t builder (see also $POAUTA NI T). Note,
that POUpdat e does not add itstargetsto po- cr eat e aliasas PO ni t does.

Iy
=== SCONS 280



Target nodes defined through POUpdat e are not built by default (they're | gnor ed from' . ' node). Instead,
they are added automatically to specia Al i as (' po- updat e' by default). The alias name may be changed
through the SPOUPDATE_AL| AS construction variable. Y ou can easily update POfilesin your project by scons
po-update.

Example 1. Updateen. po andpl . po fromnessages. pot template (see also $POTDOMVAI N), assuming that
the later one exists or thereisrule to build it (see POTUpdat e):

# ...
env. POUpdate(['en',"'pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Updateen. po and pl . po fromf 0o. pot template:

# ...

env. POUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]
Example 3. Updateen. po and pl . po fromf 00. pot (another version):

# ...

env. POQUpdate(['en', 'pl'], POTDOVAIN='foo') # foo.pot -- > [en.po, pl.pl]
Example 4. Update files for languages defined in LI NGUAS file. The files are updated from nessages. pot
template:

# ...

env. POUpdat e( LI NGQUAS_FI LE = 1) # needs 'LINGUAS file
Example 5. Same as above, but update from f 00. pot template:

# ...

env. POUpdat e( LI NGQUAS FILE = 1, source = ['fo0'])
Example 6. Update en. po and pl . po plusfiles for languages defined in LI NGUAS file. The files are updated
fromnessages. pot template:

# produce 'en.po', 'pl.po" + files defined in 'LINGUAS :

env. POUpdate(['en', "pl" ], LINGUAS FILE = 1)
Example 7. Use $POAUTA NI T to automatically initialize POfile if it doesn't exist:

# ...

env. POUpdat e( LI NGQUAS FILE = 1, POAUTONIT = 1)
Example 8. Update PO files for languages defined in LI NGUAS file. The files are updated from f 0o. pot

template. All necessary settings are pre-configured via environment.

# ...
env[' POAUTOINIT'] = 1

Iy
=== SCONS 281



Pro
env

Pro
env

env['LINGUAS FILE'] =1
env[' POTDOVAIN ] = 'foo'
env. POUpdat e()

gr am)
.Program)
Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or

Fortran source files are specified, then they will be automatically compiled to object files using the Cbj ect

builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix, specified by the $SPROGPREFI X construction variable (nothing
by default), and suffix, specified by the $PROGSUFFI X construction variable (by default, . exe on Windows
systems, nothing on POSIX systems), are automatically added to the target if not already present. Example:

env. Progran(target='foo', source=['fo0.0', 'bar.c', 'baz.f'])

gramAl | At Once()
.Programil | At Once()
Builds an executable from D sources without first creating individual objects for each file.

D sources can be compiled file-by-file as C and C++ source are, and D is integrated into the scons Object and
Program builders for this model of build. D codes can though do whole source meta-programming (some of the
testing frameworks do this). For this it is imperative that all sources are compiled and linked in asingle call to
the D compiler. This builder serves that purpose.

env. ProgramAl | At Once(' executable', ["'mod_a.d, nod _b.d', 'nod _c.d'])

This command will compile the modules mod_a, mod_b, and mod_c in asingle compilation process without first
creating object files for the modules. Some of the D compilers will create executable.o others will not.

RES()

env

RM
env

.RES()

Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The. r es (or . o for MinGW) suffix is added to the target name if no
other suffix is given. The sourcefile is scanned for implicit dependencies as though it were a C file. Example:

env. RES(' resource.rc')

C0
RM )

Builds stub and skeleton class files for remote objects from Java. cl ass files. The target is a directory relative
to which the stub and skeleton class files will be written. The source can be the names of . ¢l ass files, or the
objects return from the Java builder method.

If the construction variable $J AVACLASSDI Ris set, either in the environment or in the call to the RM C builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

cl asses = env.Java(target='classdir', source="src')
env. RM C(target="outdirl , source=cl asses)
env. RM C(

target="outdir2',

~

'—‘-‘ SCONS 282



sour ce=[ ' package/ foo. cl ass', 'package/bar.class'],

)

env. RM C(
target="outdir3',
source=["'cl asses/foo.class', 'classes/bar.class'],
JAVACLASSDI R=' cl asses'

)

RPCGend i ent ()

env.RPCGend i ent ()
Generatesan RPC client stub (_cl nt . c) filefrom a specified RPC (. x) source file. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

# Builds src/rpcif_clnt.c
env. RPCGenCl i ent (" src/rpcif.x")

RPCGenHeader ()
env.RPCGenHeader ()

Generates an RPC header (. h) file from aspecified RPC (. x) sourcefile. Because rpcgen only builds output files
in the local directory, the command will be executed in the source file's directory by default.

# Builds src/rpcif.h
env. RPCGenHeader (' src/rpcif.x")

RPCGenSer vi ce()

env.RPCGenSer vi ce()
Generates an RPC server-skeleton (_svc. c¢) file from a specified RPC (. x) source file. Because rpcgen only
builds output filesin the local directory, the command will be executed in the source file€'s directory by default.

# Builds src/rpcif_svc.c
env. RPCGenCl i ent (" src/rpcif.x")

RPCGenXDR()

env.RPCGenXDR()
Generatesan RPC XDRroutine (_xdr . ¢) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

# Builds src/rpcif_xdr.c
env. RPCGenCl i ent (" src/rpcif.x")

Shar edLi brary()

env.Shar edLi brary()
Builds ashared library (. so on aPOSIX system, . dl | on Windows) given one or more object filesor C, C++,
D or Fortran source files. If any source files are given, then they will be automatically compiled to object files.
Thetarget library file prefix, specified by the $SHLI BPREFI X construction variable (by default, | i b on POSIX
systems, nothing on Windows systems), and suffix, specified by the $SHLI BSUFFI X construction variable (by

default, . dl | onWindows systems, . so on POSIX systems), are automatically added to the target if not already
present. Example;

env. Shar edLi brary(target="bar', source=['bar.c', 'foo.0'])

Iy
=== SCONS 283



On Windows systems, the Shar edLi br ary builder method will always build an import library (. | i b) in
addition to the shared library (. dl | ), adding a. | i b library with the same basename if there is not aready a
. I'i b fileexplicitly listed in the targets.

On Cygwin systems, the Shar edLi br ar y builder method will always build an import library (. dl | . @) in
addition to the shared library (. dl | ), adding a. dlI | . a library with the same basename if there is not already
a.dl | . afileexplicitly listed in the targets.

Any object fileslisted inthesour ce must have been built for ashared library (that is, usingthe Shar edhj ect
builder method). sconswill raise an error if thereis any mismatch.

On some platforms, there is a distinction between a shared library (loaded automatically by the system to resolve
externa references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
Loadabl eModul e builder for the latter.

When the $SHLI BVERSI ON construction variableisdefined, aversioned shared library is created. Thismodifies
$SHLI NKFLAGS as required, adds the version number to the library name, and creates any symbolic links that
are needed.

env. Shar edLi brary(target="bar', source=['bar.c', 'foo.0'], SHLIBVERSI ON='1.5.2")

On a POSIX system, versions with a single token create exactly one symlink: | i bbar . so. 6 would have
symlink | i bbar . so only. On aPOSIX system, versions with two or more tokens create exactly two symlinks:
I i bbar. so. 2. 3. 1 would have symlinks| i bbar . so and | i bbar . so. 2; on aDarwin (OSX) system the
library would bel i bbar . 2. 3. 1. dyl i b and thelink would be | i bbar . dyl i b.

On Windows systems, specifying r egi st er =1 will cause the . dl | to be registered after it is built. The
command that is run is determined by the $REGSVR construction variable (regsvr 32 by default), and the flags
passed are determined by $REGSVRFLAGS. By default, $REGSVRFLAGS includes the / s option, to prevent
dialogs from popping up and requiring user attention when it isrun. If you change $REGSVRFLAGS, be sure to
includethe/ s option. For example,

env. Shar edLi brary(target ="' bar', source=['bar.cxx', 'foo.obj'], register=1)
will register bar . dl | asaCOM aobject when it is done linking it.

Shar edObj ect ()

env.Shar edhj ect ()
Builds an object file intended for inclusion in a shared library. Source files must have one of the same set of
extensions specified above for the St at i cCbj ect builder method. On some platforms building a shared object
requires additional compiler option (e.g. - f PI C for gcc) in addition to those needed to build a normal (static)
object, but on some platformsthere is no difference between a shared object and anormal (static) one. When there
is a difference, SCons will only allow shared objects to be linked into a shared library, and will use a different
suffix for shared objects. On platforms where there is no difference, SCons will alow both normal (static) and
shared objectsto belinked into ashared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix, specified by the $SHOBJPREFI X construction variable (by default, the same as
$OBJIPREFI X), and suffix, specified by the $SHOBJ SUFFI X construction variable, are automatically added to
the target if not already present. Examples:

env. Shar edObj ect (t arget =" ddd', source='ddd.c')
env. Shar edObj ect (t arget =' eee. o', source=' eee. cpp’)
env. SharedObj ect (target="fff.obj', source="fff.for")

Iy
=== SCONS 284



Note that the source fileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the manpage section " Scanner Objects’ for more information.

StaticLibrary()

env.StaticLibrary()
Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files
are given, then they will be automatically compiled to object files. The static library file prefix, specified by
the $L1 BPREFI X construction variable (by default, | i b on POSIX systems, nothing on Windows systems),
and suffix, specified by the $LI BSUFFI X construction variable (by default, . | i b on Windows systems, . a on
POSIX systems), are automatically added to the target if not already present. Example:

env. StaticLi brary(target="bar', source=['bar.c', 'foo.0'])

Any object fileslisted in the sour ce must have been built for astatic library (that is, usingthe St at i cChj ect
builder method). sconswill raise an error if thereis any mismatch.

StaticObject()

env.Stati chj ect ()
Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

.asm assenbly | anguage file
. ASM assenbly | anguage file

.C Cfile
.C Wndows: Cfile
POSI X: C++ file
.CcC C++ file
. cpp C++ file
. CXX C++ file
. CXX C++ file
. C++ C++ file
. C++ C++ file
.d Dfile
. f Fortran file
F W ndows: Fortran file
PCSI X:  Fortran file + C pre-processor
.for Fortran file
. FOR Fortran file
.fpp Fortran file + C pre-processor
. FPP Fortran file + C pre-processor
m hject Cfile
. mm onject C++ file
S assenbly | anguage file
S W ndows: assenbly | anguage file
ARM CodeSourcery Sourcery Lite
. SX assenbly | anguage file + C pre-processor
PCSI X:  assenbly | anguage file + C pre-processor
. Spp assenbly | anguage file + C pre-processor
. SPP assenbly | anguage file + C pre-processor

Thetarget object file prefix, specified by the $OBI PREFI X construction variable (nothing by default), and suffix,
specified by the $0BJ SUFFI X construction variable (. obj on Windows systems, . 0 on POSIX systems), are
automatically added to the target if not already present. Examples:

Iy
=== SCONS 285



Sub
env

env. Stati cObj ect (target="aaa', source='aaa.c')
env. St ati cObj ect (target="bbb. o', source='bbb. c++')
env. Stati cObj ect (target="ccc.obj', source='ccc.f")

Note that the source fileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the manpage section " Scanner Objects’ for more information.

stfile()

Substfile()

The Subst f i | e builder creates a single text file from a template consisting of afile or set of files (or nodes),
replacing text using the $SUBST_DI CT construction variable (if set). If aset, they are concatenated into the target
fileusing thevaueof the$LI NESEPARATOR construction variable asaseparator between contents; the separator
is not emitted after the contents of the last file. Nested lists of sourcefiles are flattened. Seeaso Text fi | e.

By default the target file encoding is "utf-8" and can be changed by $FI LE_ENCODI NG Examples:

If asingle sourcefile nameis specified and hasa. i n suffix, the suffix is stripped and the remainder of the name
is used as the default target name.

The prefix and suffix specified by the $SUBSTFI LEPREFI X and $SUBSTFI LESUFFI X construction variables
(an empty string by default in both cases) are automatically added to the target if they are not aready present.

If aconstruction variable named $SUBST DI CT is present, it may be either a Python dictionary or a sequence of
(key,val ue) tuples. If itisadictionary it isconverted into alist of tupleswith unspecified order, soif onekey is
aprefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

Any occurrences of akey in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment (tool s=['default'])

env['prefix'] = "'/usr/bin'
script_dict = {' @refix@: '/bin', '@xec_prefix@: '$prefix'}
env. Substfile('script.in', SUBST D CT=script_dict)

conf_dict = {' WERSION% : '1.2.3", '%BASE%: 'MyProg'}
env. Substfile(' config.h.in", conf_dict, SUBST D CT=conf _di ct)

# UNPREDI CTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env. Substfile(' foo.in', SUBST DI CT=bad_f 00)

# PREDI CTABLE - keys are applied | ongest first
good_foo = [(' $foobar', '$foobar'), ('$foo', '$foo')]
env. Substfile('foo.in', SUBST DI CT=good_f 00)

# UNPREDI CTABLE - one substitution could be futher expanded
bad bar = {' @ar@: ' @oap@, ' @oap@: 'lye'}
env. Substfile(' bar.in', SUBST DI CT=bad_bar)

# PREDI CTABLE - substitutions are expanded in order

~

'—‘-‘ SCONS 286



good_bar = ((' @ar@, ' @oap@), (' @oap@, 'lye'))
env. Substfile(' bar.in', SUBST DI CT=good_bar)

# the SUBST DI CT may be in conmon (and not an override)
substutions = {}
subst = Environment(tool s=['textfile' ], SUBST DI CT=substitutions)
substitutions[' @oo@] = 'foo
subst['SUBST DICT' |[' @ar@] = 'bar'
subst . Substfil e(
' pgni. c',
[ Val ue(* #i nclude "@oo@h"'), Value('#include "@ar@h"'), "common.in", "pgnl.in"],

)
subst . Substfil e(
' pgn2.c',
[ Val ue(* #i nclude "@oo@h"'), Value('#include "@ar@h""), "common.in", "pgnR.in"],
)
Tar ()
env.Tar ()

Buildsatar archive of the specified files and/or directories. Unlike most builder methods, the Tar builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Tar('src.tar', 'src')

# Create the stuff.tar file.

env. Tar (' stuff', ['"subdirl', 'subdir2'])

# Also add "another"” to the stuff.tar file.
env. Tar (' stuff', 'another')

# Set TARFLAGS to create a gzip-filtered archive.
env = Environment (TARFLAGS = '-c -2')
env. Tar('foo.tar.gz', 'foo')

# Also set the suffix to .tgz.

env = Environment (TARFLAGS = '-c -2',
TARSUFFI X = ' .tgz')

env. Tar (' foo')

Textfile()

env.Textfil e()
The Text fi | e builder generates a single text file from a template consisting of alist of strings, replacing text
using the $SUBST_DI CT construction variable (if set) - see Subst fi | e for adescription of replacement. The
strings will be separated in the target file using the value of the $L1 NESEPARATOR construction variable; the
line separator is not emitted after the last string. Nested lists of source strings are flattened. Source strings need
not literally be Python strings: they can be Nodes or Python objects that convert cleanly to Val ue nodes.

The prefix and suffix specified by the STEXTFI LEPREFI X and $TEXTFI LESUFFI X construction variables
(by default an empty string and . t xt , respectively) are automatically added to the target if they are not already
present.

By default the target file encoding is "utf-8" and can be changed by $FI LE_ENCODI NG Examples:

Iy
=== SCONS 287



# builds/wites foo.txt
env. Textfile(target="foo.txt', source=[' CGoethe', 42, 'Schiller'])

# builds/wites bar.txt
env. Textfile(target="bar', source=['lalala', '"tanteratei'], LINESEPARATOR="|*")

# nested lists are flattened automatically
env. Textfil e(target="blob', source=['lalala', ['CGoethe', 42, 'Schiller'], 'tanteratei']

# files may be used as input by waping themin File()

env. Textfil e(
target='concat', # concatenate files with a marker between
source=[File('concatl'), File('concat2')],

)

Results:

f oo. t xt

Coet he
42
Schil | er

bar . t xt

| al al a] *t ant er at ei

bl ob. t xt

| al al a
Coet he

42

Schil | er

t ant er at ei

Transl at e()

env.Transl at e()
This pseudo-builder belongs to get t ext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO trandations (if necessary). If $POAUTA NI T
is set, missing POfiles will be automatically created (i.e. without translator person intervention). The variables
$LI NGUAS_FI LE and $POTDOMAI N are taken into acount too. All other construction variables used by
POTUpdat e, and POUpdat e work here too.

Example 1. The simplest way isto specify input files and output languagesinline in a SCons script when invoking
Transl ate

# SConscript in 'po/' directory

env = Environment( tools = ["default", "gettext"] )
env[' POAUTONT ] =1
env. Translate(['en',"'pl"], ['../a.cpp',"'../b.cpp'])

Iy
=== SCONS 288



Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFI LES. i n
and LI NGUAS files

# LI NGUAS
en pl
#end

# POTFI LES. i n

a. cpp

b. cpp
# end

# SConscri pt

env = Environment( tools = ["default", "gettext"] )

env[' POAUTONT ] =1

env[' XGETTEXTPATH ] =['../"]

env. Transl at e(LI NGQUAS_FI LE = 1, XGETTEXTFROM = ' POTFI LES.in")

The last approach is perhaps the recommended one. It allows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for translations (from sources to POfiles) and
script(s) under variant directories are responsible for compilation of POto MOfiles to and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LI NGUAS file. Note, that the
updated POT and POfiles are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the filelisting of po/ directory contains
LI NGUAS file, so the source tree looks familiar to trandators, and they may work with the project in their usual

way.

Example 3. Let's prepare a devel opment tree as below

proj ect/
+ SConst r uct
+ bui | d/
+ src/
+ po/
+ SConscri pt
+ SConscript.i 18n
+ POTFI LES. i n
+ LI NGUAS

with bui | d being variant directory. Write the top-level SConst r uct script asfollows

# SConst ruct

env = Environment( tools = ["default", "gettext"] )
VariantDir("build , 'src', duplicate = 0)

env[' POAUTONT ] =1

SConscri pt (' src/ po/ SConscript.i18n', exports = 'env')
SConscri pt (' bui | d/ po/ SConscript', exports = "env')

thesr c/ po/ SConscri pt.i 18nas

Iy
=== SCONS 289



# src/ po/ SConscript.i 18n
| mport (' env')

env. Transl at e( LI NGQUAS_FI LE=1, XGETTEXTFROVE' POTFI LES. in', XGETTEXTPATH=['.

and thesr ¢/ po/ SConscr i pt

# src/ po/ SConscri pt
| mport (' env')
env. MOFi | es( LI NGUAS FI LE = 1)

Such setup produces POT and POfiles under source treein sr ¢/ po/ and binary MOfiles under variant treein
bui | d/ po/ . Thisway the POT and POfiles are separated from other output files, which must not be committed
back to source repositories (e.g. MOfiles).

Note

In above example, the PO files are not updated, nor created automatically when you issue scons '.'
command. The files must be updated (created) by hand via scons po-update and then MOfiles can be
compiled by running scons'.".

TypeLi brary()

env.TypelLi brary()
BuildsaWindowstypelibrary (. t | b) filefromaninput IDL file(. i dl ). Inaddition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the.. i dI file. For example,

env. TypelLi brary(source="foo.idl")
Will createf 0o. t1 b,foo. h,foo_i.c,foo_p.candfoo_data. c files.

U c()

env.Ui c()
Builds a header file, an implementation file and amoc file from an ui file. and returns the corresponding nodes in
the that order. This builder is only available after using the tool gt 3. Note: you can specify . ui filesdirectly as
source files to the Pr ogr am Li br ary and Shar edLi br ar y builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are aways prepended to names of
built files; if you don't want prefixes, you may set them to ). See the $QT3DI R variable for more information.
Example:

env.U c('foo.ui') # ->['foo.h', "uic_foo.cc', 'noc_foo.cc']
env. Ui c(
target=Split('include/foo.h gen/uicfoo.cc gen/nocfoo.cc'),
sour ce='fo0. ui'
) # ->["include/foo.h', 'gen/uicfoo.cc', 'gen/nocfoo.cc']

Zi p()
env.Zi p()

Buildsazip archive of the specified files and/or directories. Unlike most builder methods, the Zi p builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Zip('src.zip', 'src')

Iy
=== SCONS 290

1)



# Create the stuff.zip file.

env. Zip('stuff', ['subdirl', 'subdir2'])

# Also add "another" to the stuff.tar file.
env. Zi p('stuff', 'another')

~

'—‘—' SCONS 291



Appendix C. Tools

This appendix contains descriptions of all of the Tools modules that are available "out of the box" in this version of
SCons.

386asm
Sets construction variables for the 386ASM assembiler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

aixc++
Sets construction variables for the IMB xlc/ Visual Age C++ compiler.

Sets: $CXX, SCXXVERSI QN, $SHCXX, $SHOBJ SUFFI X.

aixcc
Sets construction variables for the IBM xlc/ Visual Age C compiler.

Sets: $CC, $CCVERSI ON, $SHCC.

aixf77
Sets construction variables for the IBM Visual Age 77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visua Agelinker.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

applelink
Sets construction variables for the Apple linker (similar to the GNU linker).
Sets: $APPLELI NK_COWVPATI BI LI TY_VERSI ON, $APPLELI NK_CURRENT_VERSI ON,
$APPLEL| NK_NO_COWPATI BI LI TY_VERSI ON, $APPLELI NK_NO_CURRENT_VERSI ON,
$FRAVEVORKPATHPREFI X, $L DMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X,
$LDMODULESUFFI X, $LI NKCOM $SHLI NKCOM $SHLI NKFLAGS,
$_APPLEL| NK_COWPATI BI LI TY_VERSI ON, $_APPLELI NK_CURRENT_VERSI ON,

$_FRAVEVORKPATH, $_ FRAMEVIORKS.
Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $RANLI B, $RANLI BCOM $RANLI BFLAGS.

Sets construction variables for the as assembler.
Sets: $AS, SASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.

Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

Iy
=== SCONS 292



bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$I NCPREFI X, $I NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $_CPPDEFFLAGS, $_CPPI NCFLAGS.

cc
Sets construction variables for generic POSIX C compilers.

Sets: $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X,
$CPPDEFSUFFI X, $FRAVEWORKPATH, $FRAMVEVORKS, $1 NCPREFI X, $1 NCSUFFI X, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $CCCOVBTR, $PLATFORM $SHCCCOVSTR.

clang
Set construction variables for the Clang C compiler.

Sets: $CC, $CCDEPFLAGS, $CCVERSI ON, $SHCCFLAGS.

clangxx
Set construction variables for the Clang C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X,
$STATI C_AND_SHARED_OBJECTS_ARE_THE_SAME.

compilation_db
Setsup Conpi | at i onDat abase builder which generates a clang tooling compatible compilation database.

Sets: $COWVPI LATI ONDB_COMSTR, $COVPI LATI ONDB_PATH_FI LTER,
$COVPI LATI ONDB_USE_ABSPATH.

cvf
Sets construction variables for the Compag Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANMODDI R, $FORTRANMODDI RPREFI X,
$FORTRANMODDI RSUFFI X, $FORTRANPPCOM $0BJ SUFFI X, $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS,
$_FORTRANMODFLAG

cXX
Sets construction variables for generic POSIX C++ compilers.

Sets.  $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $| NCSUFFI X, $0BJ SUFFI X, $SHCXX, $SHCXXCOM $SHCXXFLAGS, $SHOBJ SUFFI X.

Uses: $CXXCOMBTR, $SHCXXCOMSTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $I MPLI BPREFI X, $I MPLI BSUFFI X, $LDMODULEVERSI ONFLAGS, $LI NKFLAGS,
$RPATHPREFI X, $RPATHSUFFI X, $SHLI BPREFI X, $SHLI BSUFFI X, $SHLI BVERSI ONFLAGS,
$SHLI NKCOM $SHLI NKFLAGS, $_ L DMODULEVERSI ONFLAGS, $_SHLI BVERSI ONFLAGS.

Iy
=== SCONS 293



default
Sets construction variables for a default list of Tool modules. Use default in the tools list to retain the original
defaults, since the t ool s parameter is treated as a literal statement of the tools to be made available in that
construction environment, not an addition.

Thelist of tools selected by default is not static, but is dependent both on the platform and on the softwareinstalled
on the platform. Sometoolswill not initialize if an underlying command is not found, and some tools are sel ected
from alist of choices on a first-found basis. The finished tool list can be examined by inspecting the $TOOLS
construction variable in the construction environment.

On all platforms, the tools from the following list are selected if their respective conditions are met: filesystem;,
wix, | ex, yacc, rpcgen, swig, jar, javac, javah, rm c, dvi pdf, dvi ps, gs, tex, | atex,
pdf | at ex, pdftex,tar,zip,textfile.

On Linux systems, the default tools list selects (first-found): a C compiler from gcc, i ntel c,icc, cc;aC
++ compiler from g++, i nt el ¢, i cc, cXX; an assembler from gas, nasm nasm alinker from gnul i nk,
i 1i nk; aFortran compiler fromgf ortran, g77,ifort,ifl,f95,f90,f77; and astatic archiver ar . It
also selects all found from the list md rpm.

OnWindows systems, the default toolslist selects (first-found): aC compiler fromnsvc, m ngw,gcc,i nt el c,
icl,icc,cc,bcc32;aC++compilerfromnsvc,intel c,icc,g++,¢cXX, bcc32;anassembler fromnmasm
nasm gas, 386asny alinker from sl i nk, gnul i nk,ilink,|inkloc,ilink32;aFortran compiler
fromgfortran,g77,ifl,cvf,f95,f90,fortran; andastatc archiver fromnsl i b,ar,tlib;Itaso
selectsal found from thelist msvs, i dl .

On MacOS systems, the default tools list selects (first-found): a C compiler from gcc, cc; a C++ compiler from
g++, cXX; an assembler as; alinker from appl el i nk, gnul i nk; aFortran compiler fromgf ort r an, f 95,
f 90, g77; and astatic archiver ar . It also selects all found from the list m4, rpm.

Default lists for other platforms can be found by examining the scons source code (see SCons/ Tool /
_init__.py).

dmd
Sets construction variables for D language compiler DMD.

Setss  $DC, $DCOM  $DDEBUG ~ $DDEBUGPREFI X,  $DDEBUGSUFFI X,  $DFI LESUFFI X,
$DFLAGPREFI X,  $DFLAGS, $DFLAGSUFFI X,  $DI NCPREFI X,  $DI NCSUFFI X,  $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLI NK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERSI ONS, $DVERSUFFI X, $SHDC, $SHDCOM  $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

docbook
Thistool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheetsas of version 1.76.1. Aslong asyou don't specify your own stylesheetsfor customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet uti | s/ xm depend. xsl| by Paul DuBoisis used for this purpose.

Note, that there is no support for XML catalog resolving offered! Thistool callsthe XSLT processors and PDF
renderers with the stylesheets you specified, that'sit. The rest liesin your hands and you still have to know what
you're doing when resolving names via a catalog.

Iy
=== SCONS 294



For activating the tool "docbook", you have to add its name to the Environment constructor, like this
env = Environnent (t ool s=[' dochook'])

On its startup, the docbook tool triesto find arequired xsl t pr oc processor, and a PDF renderer, e.g. fop. So
make sure that these are added to your system'’s environment PATH and can be called directly without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

» thePython| xm bindingtol i bxm 2, or

» astandalone XSLT processor, currently detected are xdtproc, saxon, saxon-xdt and xalan.
Rendering to PDF requires you to have one of the applications fop or xep installed.

Creating aHTML or PDF document is very simple and straightforward. Say

env = Environnent (tool s=[' dochook'])
env. DocbookHt m (' manual . html ', ' manual . xm ')
env. DocbookPdf (* manual . pdf', ' nmanual .xm ")

to get both outputs from your XML source manual . xm . Asashortcut, you can give the stem of the filenames
alone, like this:

env = Environnent (tool s=[' dochook'])
env. DocbookHt ml (' manual ')
env. DocbookPdf (* manual ')

and get the same result. Target and source lists are also supported:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m ([' manual . htm ' ,"'reference. htm '], ['manual .xm ', 'reference.xm'])

or even

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m ([ ' manual ', ' reference'])

I mportant

Whenever you leave out thelist of sources, you may not specify afile extension! The Tool usesthe given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are vaid for the Builders DocbookH m, DocbookPdf, DocbookEpub,
DocbookSl i desPdf and DocbookXI ncl ude. For the DocbookMan transformation you can specify a
target name, but the actual output names are automatically set from the r ef nane entriesin your XML source.

TheBuildersDocbookHt ml Chunked, DocbookHt ml hel p andDocbookSl i desHt nml arespecia, inthat:

1. they create alarge set of files, where the exact names and their number depend on the content of the source
file, and

2. themain target isalwaysnamed i ndex. ht i , i.e. the output name for the XSL transformation is not picked
up by the stylesheets.

As aresult, there is ssimply no use in specifying a target HTML name. So the basic syntax for these buildersis
always:

Iy
=== SCONS 295



dvi

env = Environment (t ool s=[' docbook'])
env. DocbookHt m hel p(* manual ')

If you want to use a specific XSL file, you can set the additional xs| parameter to your Builder call asfollows:
env. DocbookHt M (' other.html ', 'manual .xm ', xsl="htm.xsl")

Sincethismay get tediousif you always usethe samelocal naming for your customized X SL files, e.g. ht m . xsl
for HTML and pdf . xsl| for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT_XSL_HTM.
DOCBOOK_DEFAULT_XSL_HTM.CHUNKED
DOCBOOK_DEFAULT_XSL_HTM_HELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB
DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLI DESPDF
DOCBOOK_DEFAULT_XSL_SLI DESHTM.

and you can set them when constructing your environment:

env = Environment (
t ool s=[' docbook' ],
DOCBOOK_DEFAULT_XSL_HTML=' ht m . xsl ',
DOCBOOK_DEFAULT_XSL_PDF=' pdf . xsl ',

)

env. DocbookHt m (' manual ') # now uses htm . xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTM.,
$DOCBOOK_DEFAULT_XSL_ HTM.CHUNKED, $DOCBOOK_DEFAULT_XSL_HTM_HELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_PDF,

$DOCBOOK_DEFAULT_XSL_SLI DESHTM., $DOCBOOK_DEFAULT_XSL_SLI DESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM,  $DOCBOOK_FOPFLAGS,  $DOCBOOK_XMLLI NT,  $DOCBOOK_XMLLI NTCOM
$DOCBOOK_XMLLI NTFLAGS, $DOCBOOK_XSLTPRCC, $DOCBOOK_XSL TPROCCOM
$DOCBOOK_XSL TPROCFLAGS, $DOCBOOK_XSL TPROCPARANS.

Uses: $DOCBOOK_FOPCOVSTR, $DOCBOOK_XML_LI NTCOVSTR, $DOCBOOK_XSLTPROCCOVSTR.

Attachesthe DVI builder to the construction environment.

dvipdf

Sets construction variables for the dvipdf utility.
Sets: $DVI PDF, $DVI PDFCOM $DVI PDFFLAGS.

Uses: $DVI PDFCOVBTR.

dvips

Sets construction variables for the dvips utility.
Sets: $DVI PS, $DVI PSFLAGS, $PSCOM $PSPREFI X, $PSSUFFI X.

Uses: $PSCOMBTR.

~

'—‘-‘ SCONS 296



f03
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM $FO3FLAGS, $F03PPCOM $SHF03, $SHFO3COM $SHFO3FLAGS, $SHFO3PPCOM
$_FO03! NCFLAGS.

Uses: $FO3COMSTR, $FO3PPCOVETR, $FORTRANCOMVONFLAGS, $SHFO3COVSTR, $SHFO3PPCOVETR.

fo8
Set construction variables for generic POSIX Fortran 08 compilers.

Sets: $F08, $F08COM $FO8FLAGS, $FO08PPCOM $SHF08, $SHFO08COM $SHFO08FLAGS, $SHF08PPCOM
$_F08I NCFLAGS.

Uses: $FO8COVMSTR, $FO8PPCOVETR, $FORTRANCOMMONFLAGS, $SHFO8COVSTR, $SHFO8PPCOVSTR.

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM $F77FI LESUFFI XES, $F77FLAGS, $F77PPCOM $F77PPFI LESUFFI XES,
$FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM $_F771 NCFLAGS.

Uses: $F77COVBTR, $F77PPCOMBTR, $FORTRANCOMMONFLAGS, $FORTRANCOMSTR,
$FORTRANFLAGS, $FORTRANPPCOMSTR, $SHF77COMSTR, $SHF77PPCOVBTR, $SHFORTRANCOVSTR,
$SHFORTRANFLAGS, $SHFORTRANPPCOVMSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM $FI0FLAGS, $F90PPCOM $SHF90, $SHF90COM $SHFI0FLAGS, $SHF90PPCOM
$_F90!l NCFLAGS.

Uses: $F90COMBTR, $F90PPCOVSTR, $FORTRANCOMVONFLAGS, $SHF90COVETR, $SHF90PPCOVSTR.

fo5
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95COM $FI5FLAGS, $F95PPCOM $SHF95, $SHF95C0M $SHFI5FLAGS, $SHF95PPCOM
$_F95| NCFLAGS.

Uses: $F95COMBTR, $F95PPCOVETR, $FORTRANCOMVONFLAGS, $SHF95COVETR, $SHF95PPCOVSTR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets.  $FORTRAN, $FORTRANCOM  $FORTRANFLAGS, $SHFORTRAN,  $SHFORTRANCOM
$SHFORTRANFLAGS, $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANCOVSTR, $FORTRANPPCOMVETR, $SHFORTRANCOVSTR,
$SHFORTRANPPCOVSTR, $_ CPPDEFFLAGS.

g++
Set construction variables for the g++ C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X.

Iy
=== SCONS 297



g77

gas

gcc

gdc

Set construction variables for the g77 Fortran compiler.

Sets: $F77, $F77COM $F77FI LESUFFI XES, $F77PPCOM $F77PPFI LESUFFI XES, $FORTRAN,
$FORTRANCOM  $FORTRANPPCOM  $SHF77, $SHF77COM  $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM

Uses: $F77FLAGS, $FORTRANCOVMONFLAGS, $FORTRANFLAGS.

Sets construction variables for the gas assembler. Callsthe as tool.

Sets: $AS.

Set construction variables for the gcc C compiler.

Sets: $CC, $CCDEPFLAGS, $CCVERSI ON, $SHCCFLAGS.

Sets construction variables for the D language compiler GDC.

Sets: $DC, $DCOM  $DDEBUG ~ $DDEBUGPREFI X,  $DDEBUGSUFFI X,  $DFI LESUFFI X,
$DFLAGPREFI X,  $DFLAGS, $DFLAGSUFFI X,  $DI NCPREFI X,  $DI NCSUFFI X,  $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X,  $DLI BLI NKSUFFI X,  $DLI NK,  $DLI NKCOM  $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERSI ONS, $DVERSUFFI X, $SHDC, $SHDCOM  $SHDLI BVERSI ONFLAGS,  $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

gettext

gfor

Thisisactually atoolset, which supports internationalization and localization of software being constructed with
SCons. The toolset loads following tools:

e xgettext -toextract internationalized messages from source code to POT file(s),
* nBQi nit - may beoptionally used to initialize POfiles,

» nsgner ge - to update POfiles, that already contain translated messages,

» negf m - to compiletextual POfileto binary installable MOfile.

When you enable get t ext, it internaly loads all abovementioned tools, so you're encouraged to see their
individual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related to
software internationalization. Y ou may be however interested in top-level Tr ansl at e builder.

Tousegett ext toolsadd' gett ext' tool to your environment:

env = Environment( tools = ['default', 'gettext'] )

tran
Sets construction variables for the GNU Fortran compiler. Callsthef or t r an Tool module to set variables.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

~

'—‘—' SCONS 298



gnulink
Set construction variables for GNU linker/loader.

Sets:  $LDMODULEVERSI ONFLAGS, $RPATHPREFI X, $RPATHSUFFI X, $SHLI BVERSI ONFLAGS,
$SHLI NKFLAGS, $_LDMODULESONAME, $_SHLI BSONAME.

gs
This Tool sets the required construction variables for working with the Ghostscript software. It also registers an
appropriate Action with the PDF Builder, such that the conversion from PS/EPS to PDF happens automatically
for the TeX/LaTeX toolchain. Finaly, it adds an explicit Gs Builder for Ghostscript to the environment.

Sets: $GS, $GSCOM $GSFLAGS.
Uses: $GSCOMSTR.

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for aCC compilers on HP/UX systems. Calls the ¢ XX tool for additional variables.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $L1 NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

icc
Sets construction variables for the icc compiler on OS/2 systems.

Setss  $CC, $CCCOM  $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXXCOM
$CXXFI LESUFFI X, $| NCPREFI X, $| NCSUFFI X.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.
icl

Sets construction variables for the Intel C/C++ compiler. Calsthei nt el ¢ Tool module to set its variables.
ifl

Sets construction variables for the Intel Fortran compiler.

Sets: SFORTRAN, $FORTRANCOM $FORTRANPPCOM $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $ FORTRANI NCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for theilink linker on OS/2 systems.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

Iy
=== SCONS 299



ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM

$LI NKFLAGS.

install
Sets construction variables for file and directory installation.

Sets: $1 NSTALL, $I NSTALLSTR.

intelc

Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Callsthegcc

or nsvc (on Linux and Windows, respectively) tool to set underlying variables.
Sets: $AR, $CC, $CXX, $I NTEL_C _COWVPI LER _VERSI ON, $LI NK.

jar
Sets construction variables for the jar utility.

Sets: $JAR, $IARCOM $IARFLAGS, $JARSUFFI X.
Uses: $JARCOMSTR.

javac
Sets construction variables for the javac compiler.

Sets.  $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM  $JAVACFLAGS,
$IAVACLASSSUFFI X, $J AVAI NCLUDES, $J AVASOURCEPATH, $J AVASUFFI X.

Uses: $JAVACCOMSTR.

javah
Sets construction variables for the javah tool.

Sets: $JAVACLASSSUFFI X, $JAVAH, $J AVAHCOM $JAVAHFLAGS.
Uses: $J AVACLASSPATH, $J AVAHCOVBTR.

latex
Sets construction variables for the latex utility.

Sets: SLATEX, SLATEXCOM $LATEXFLAGS.
Uses: SLATEXCOMSTR.

Idc
Sets construction variables for the D language compiler LDC2.

Setss $DC, $DCOM  $DDEBUG ~ $DDEBUGPREFI X,  $DDEBUGSUFFI X,

$IAVACLASSPATH,

$DFI LESUFFI X,

$DFLAGPREFI X,  $DFLAGS, $DFLAGSUFFI X,  $DI NCPREFI X,  $DI NCSUFFI X,  $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,

$DLI BLI NKPREFI X,  $DLI BLI NKSUFFI X,  $DLI NK,  $DLI NKCOM

$DLI NKFLAGPREFI X,

$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERSI ONS, $DVERSUFFI X, $SHDC, $SHDCOM  $SHDLI BVERSI ONFLAGS, $SHDLI NK,

$SHDLI NKCOM $SHDL| NKFLAGS.

Iy
=== SCONS

300



lex
Sets construction variables for the lex lexical analyser.

Sets: $LEX, SLEXCOM $LEXFLAGS, $LEXUNI STD.
Uses: $LEXCOVSTR, $LEXFLAGS, $LEX_HEADER_FI LE, $LEX_TABLES_FI LE.
link
Sets construction variables for generic POSIX linkers. Thisis a"smart" linker tool which selects a compiler to

complete the linking based on the types of sourcefiles.

Sets:  $LDMODULE, $LDMODULECOM  $LDMODULEFLAGS, $LDMODULENOVERSI ONSYMLI NKS,
$LDMODULEPREFI X, $LDMODULESUFFI X, $LDMODULEVERSI ON, $LDMODULEVERSI ONFLAGS,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LINK,
$LI NKCOM  $LI NKFLAGS, $SHLI BSUFFI X,  $SHLINK, $SHLI NKCOM  $SHLI NKFLAGS,
$__ LDMODULEVERSI ONFLAGS, $__ SHLI BVERSI ONFLAGS.

Uses: $LDMODULECOVSTR, $LI NKCOVSTR, $SHLI NKCOMSTR.

linkloc
Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

Uses: $L1 NKCOVBTR, $SHLI NKCOMSTR.

m4
Sets construction variables for the m4 macro processor.

Sets: $W¢H, $MACOM $MAFLAGS.
Uses: SMACOVBTR.

masm
Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVSTR, $ASPPCOMSTR, $CPPFLAGS, $_ CPPDEFFLAGS, $_CPPI NCFLAGS.

midl
Sets construction variables for the Microsoft IDL compiler.

Sets: $M DL, $M DLCOM $M DLFLAGS.

Uses: $M DLCOMSTR.

mingw
Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, $LDMODULECOM S$LI BPREFI X, $LI BSUFFI X, $OBJSUFFI X, $RC,
$RCCOM $RCFLAGS, $RCI NCFLAGS, $RCI NCPREFI X, $RCl NCSUFFI X, $SHCCFLAGS, $SHCXXFLAGS,
$SHLI NKCOM $SHLI NKFLAGS, $SHOBJI SUFFI X, $W NDOASDEFPREFI X, $W NDOASDEFSUFFI X.

Uses: $RCCOVBTR, $SHLI NKCOVSTR.

Iy
=== SCONS 301



msgfmt
This scons toal is a part of scons get t ext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from atextual translation description (PO).

Sets: SMOSUFFI X, $MSGFMT, $MSG-MICOM $MSGFMTCOVSTR, $MSGFMTFLAGS, $POSUFFI X.
Uses: $L1 NGUAS_FI LE.
msginit
This scons tool is a part of scons get t ext toolset. It provides scons interface to msginit(1) program, which
creates new POfile, initializing the meta information with values from user's environment (or options).

Setss $MSANT, $MSG NITCOM $MsG NI TCOVSTR, $MSA NI TFLAGS, $POAUTAO NI T,
$POCREATE_ALI| AS, $POSUFFI X, $POTSUFFI X, $_M5G NI TLOCALE.

Uses: $LI NGUAS_FI LE, $PCAUTO NI T, $POTDOVAI N.

msgmer ge
Thissconstool isapart of sconsget t ext toolset. It provides scons interface to msgmer ge(1) command, which
merges two Uniform style . po files together.

Sets.  $MSGVERGE, $MSGVERGECOM $MSGVERGECOMBTR, $MSGVERGEFLAGS, $POSUFFI X,
$POTSUFFI X, $POUPDATE_ALI AS.

Uses: $LI NGUAS_FI LE, $PCAUTO NI T, $POTDOVAI N.

mslib
Sets construction variables for the Microsoft mdlib library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: $ARCOVETR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X, $LDMODULESUFFI X,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $REGSVR, $REGSVRCOM $REGSVRFLAGS, $SHLI NK, $SHLI NKCOM
$SHLI NKFLAGS, $W NDOWSDEFPREFI X, $W NDOWEDEFSUFFI X, $W NDOWNSEXPPREFI X,
$W NDONBEXPSUFFI X,  $W NDOANSPROGVANI FESTPREFI X,  $W NDOASPROGVANI FESTSUFFI X,
$W NDOWNESHLI BMANI FESTPREFI X, $W NDOWSSHLI BMANI FESTSUFFI X, $W NDOAS_| NSERT_DEF.

Uses: $LDMODULECOVSTR, $LI NKCOVSTR, $REGSVRCOVSTR, $SHLI NKCOVSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: %4 NCLUDEY%, %1 B% %4_1 BPATH%and %PATHY

Uses: $MSSDK_DI R, $MSSDK_VERSI ON, $MBVS_VERSI ON.

msvc
Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUI LDERS, $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS,
$CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X,

Iy
=== SCONS 302



$CXXFLAGS, $I NCPREFI X, $1 NCSUFFI X, $OBJPREFI X, $0BJ SUFFI X, $PCHCOM $PCHPDBFLAGS,
$RC, $RCCOM $RCFLAGS, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM
$SHCXXFLAGS, $SHOBJPREF| X, $SHOBJ SUFFI X.

Uses. $CCCOMBTR, $CXXCOVBTR, $MSVC_NOTFOUND_POLI CY, $MSVC_SCRI PTERROR_PCLI CY,
$MBVC_SCRI PT_ARGS, $MBVC_SDK_VERSI ON, $MBVC_SPECTRE. LI BS,
$MBVC_TOOLSET VERSI O\, $MBVC_USE_SCRI PT, $MBVC_USE_SCRI PT_ARGS,
$VBVC _USE_SETTI NGS, $MBVC_VERSI ON, $PCH, $PCHSTOP, $PDB, $SHCCCOVBTR, $SHCXXCOVBTR.

msvs
Sets construction variables for Microsoft Visual Studio.

Sets: $MSVSBUI LDCOM $MSVSCLEANCOM $MSVSENCODI NG, $MSVSPRQIECTCOM
$MSVSREBUI LDCOM $MSVSSCONS, $MSVSSCONSCOM $MSVSSCONSCRI PT, $MSVSSCONSFLAGS,
$MBVSSOLUTI ONCOM

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets:. $CC, $CCCOM  $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM
$CXXFI LESUFFI X, $I NCPREFI X, $I NCSUFFI X, $MACW VERSI ON, $MACW VERSI ONS, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS.

Uses: $CCCOVBTR, $CXXCOMSTR, $SHCCCOVETR, $SHCXXCOMBTR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM $LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X,
SLINK, $LI NKCOM $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVETR, $ASPPCOMSTR.

ninja
Sets up the Ni nj a builder, which generates a ninja build file, and then optionally runs ninja.

Note

This is an experimental feature. This functionality is subject to change and/or removal without a

deprecation cycle.
Sets:  $I MPLI CI T_COMVAND_DEPENDENCI ES,  $NI NJA_ALI AS_NAME, $NI NJA_CVD_ARGS,
$NI NJA_COVPDB_EXPAND, $NI NJA_DEPFI LE_PARSE_FORVAT, $NINJA DI R,
$NI NJA_ DI SABLE_AUTO_RUN, $NI NJA_ENV_VAR_CACHE, $NI NJA_FI LE_NAME,
$NI NJA_FORCE_SCONS_BUI LD, $NI NJA_GENERATED_SOURCE_ALI AS_NAME,
$NI NJA_GENERATED_ SOURCE_SUFFI XES, $NI NJA_MSVC_DEPS_PREFI X, $NI NJA_POCL,
$NI NJA_REGENERATE_DEPS, $NI NJA_SCONS_DAEMON_KEEP_ALI VE,

$NI NJA_SCONS_DAEMON_PORT, $NI NJA SYNTAX, $_NI NJA_REGENERATE_DEPS_FUNC.

Uses: $AR, $ARCOM $ARFLAGS, $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CXX, $CXXCOM $ESCAPE,
$LI NK, $L1 NKCOM $PLATFORM $PRI NT_CVD_LI NE_FUNC, $PROGSUFFI X, $RANLI B, $RANLI BCOM
$SHCCCOM $SHCXXCOM $SHLI NK, $SHLI NKCOM

Iy
=== SCONS 303



packaging
Sets construction variables for the Package Builder. If thistool isenabled, the - - package-t ype command-
line option is also enabled.

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREFI X, $PDFSUFFI X.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS.
Uses: $PDFLATEXCOMSTR.

pdftex
Sets construction variables for the pdftex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM
$PDFTEXFLAGS.

Uses: $PDFLATEXCOVSTR, $PDFTEXCOMSTR.

python
L oads the Python source scanner into the invoking environment. When loaded, the scanner will attempt to find
implicit dependencies for any Python source files in the list of sources provided to an Action that uses this
environment.

Available since scons 4.0..

qt
Placeholder tool to alert anyone still using gt tools to switch to qt3 or newer tool.

qt3
Sets construction variables for building Qt3 applications.

Note

This tool is only suitable for building targeted to Qt3, which is obsolete (the tool is deprecated since
4.3, and was renamed to qgt3 in 4.5.0. ). There are contributed tools for Qt4 and Qt5, see https.//
github.com/SCons/scons-contrib [https.//github.com/SCons/scons-contrib]. Qt4 has also passed end of
life for standard support (in Dec 2015).

Note paths for these construction variables are assembled using the os. pat h. j oi n method so they will have
the appropriate separator at runtime, but are listed here in the various entries only with the ' /' separator for
simplicity.

In addition, the construction variables $§CPPPATH, $LI BPATH and $LI BS may be modified and the variables
$PROGEM TTER, $SHLI BEM TTER and $LI BEM TTER are modified. Because the build-performance is
affected when using this tool, you have to explicitly specify it at Environment creation:

Envi ronnent (tool s=[ "' default','qt3'])

The qt 3 tool supports the following operations:

Iy
=== SCONS 304


https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib

Automatic moc file generation from header files. Y ou do not have to specify moc files explicitly, the tool does
it for you. However, there are a few preconditions to do so: Your header file must have the same filebase as
your implementation file and must stay in the same directory. It must have one of the suffixes. h, . hpp, . H,
. hxx, . hh. You can turn off automatic moc file generation by setting $QT3_ AUTOSCAN to Fal se. See also
the corresponding Mbc Builder.

Automatic moc file generation from C++ files. As described in the Qt documentation, include the
moc file at the end of the C++ file. Note that you have to include the file, which is generated
by the transformation ${ QIr3_MOCCXXPREFI X} <basenane>${ QT3_MOCCXXSUFFI X}, by default
<basenane>. no. A warning is generated after building the moc file if you do not include the correct file. If
you areusing Var i ant Di r, you may need to specify dupl i cat e=Tr ue. Y ou can turn off automatic moc file
generation by setting $QT3_AUTOSCAN'to Fal se. See aso the corresponding Moc Builder.

Automatic handling of .ui files. The implementation files generated from . ui files are handled much the same
asyacc or lex files. Each .ui file given asa source of Pr ogr am Li br ary or Shar edLi br ary will generate
three files: the declaration file, the implementation file and a moc file. Because there are also generated headers,
you may need to specify dupl i cat e=Tr ue incallstoVari ant Di r. Seeaso the corresponding Ui ¢ Builder.

Sets: $QT3DI R, $QT3_AUTOSCAN, $QT3_BI NPATH, $QT3_CPPPATH, $QT3_LI B, $QT3_LI BPATH,
$QT3_MOC, $QT3_MOCCXXPREFI X, $QT3_MOCCXXSUFFI X, $QT3_ MOCFROMCXXCOM
$QT3_MOCFROMCXXFLAGS, $QT3_MOCFROVHCOM  $QT3_MOCFROVHFLAGS, $QT3_MOCHPREFI X,
$QT3_MOCHSUFFI X, $QT3_UI C, $QT3_Ul CCOM $QT3_Ul CDECLFLAGS, $QT3_UI CDECLPREFI X,
$QT3_UI CDECLSUFFI X, $QT3_Ul CI MPLFLAGS, $QT3_Ul Cl MPLPREFI X, $QT3_UI CI MPLSUFFI X,
$QT3_Ul SUFFI X.

Uses: $QT3DI R

rmic
Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFI X, $RM C, $RM CCOM $RM CFLAGS.
Uses: $RM CCOMBTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCGENCLI ENTFLAGS, $RPCCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCCGENSERVI CEFLAGS, $RPCGENXDRFLAGS.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, $ARCOVBTR, $SARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $SHLI NK, $SHLI NKFLAGS.
Uses: SARCOMSTR, $SHLI NKCOMSTR.

sgic++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBISUFFI X.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBI SUFFI X.

Iy
=== SCONS 305



sgilink
Sets construction variables for the SGI linker.

Sets: $LI NK, SRPATHPREF| X, $RPATHSUFFI X, $SHLI NKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Sets: $AR, SARCOM $ARFLAGS, $L1 BPREFI X, $L1 BSUFFI X.
Uses: $ARCOVETR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXX, $SHCXXFLAGS, $SHOBJPREF| X, $SHOBJ SUFFI X.

suncc
Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJI PREFI X, $SHOBJ SUFFI X.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, SFORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90
Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHF90, $SHFIOFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf95
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Sets: SRPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

swig
Sets construction variables for the SWIG interface compiler.

Sets: $SW G, $SW GCFI LESUFFI X, $SW GCOM $SW GCXXFI LESUFFI X, $SW GDI RECTORSUFFI X,
$SW GFLAGS,  $SW G NCPREFI X,  $SW G NCSUFFI X,  $SW GPATH,  $SW GVERSI O\,
$_SW G NCFLAGS.

Uses: $SW GCOVSTR.

tar
Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM $TARFLAGS, $TARSUFFI X.

Uses: $STARCOVSTR.

Iy
=== SCONS 306



tex

Sets construction variables for the TeX formatter and typesetter.

Sets: $BI BTEX, $BI BTEXCOM $Bl BTEXFLAGS, $LATEX, $LATEXCOM $LATEXFLAGS, $MAKEI NDEX,
$MAKEI NDEXCOM $MAKEI NDEXFLAGS, $TEX, $TEXCOM $TEXFLAGS.

Uses: $BI BTEXCOVSTR, $LATEXCOVSTR, $MAKEI NDEXCOVSTR, $TEXCOVSTR.

textfile

tlib

xget

Set construction variables for the Text f i | e and Subst fi | e builders.

Sets:  $FI LE_ENCODI NG,  $LI NESEPARATOR, $SUBSTFI LEPREFI X,  $SUBSTFI LESUFFI X,
$TEXTFI LEPREFI X, $STEXTFI LESUFFI X.

Uses: $SUBST_DI CT.

Sets construction variables for the Borlan tib library archiver.
Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $LI1 BSUFFI X.
Uses: $ARCOVMBTR.

text

This scons tool is a part of scons get t ext toolset. It provides scons interface to xgettext(1) program, which
extracts internationalized messages from source code. The tool provides POTUpdat e builder to make PO
Templatefiles.

Sets: $POTSUFFI X, $POTUPDATE_ALI AS, $XCETTEXTCOM $XCGETTEXTCOMBTR,
SXGETTEXTFLAGS, $XGETTEXTFROM  $XCETTEXTFROWPREFI X,  $XCGETTEXTFROVBUFFI X,
SXGETTEXTPATH, $XGETTEXTPATHPREFI X, $XCETTEXTPATHSUFFI X, $_XGETTEXTDOWAI N,
$_XGETTEXTFROVFLAGS, $_XGETTEXTPATHFLAGS.

Uses: $POTDOVAI N.

yacc

zip

Sets construction variables for the yacc parse generator.

Setss  $YACC, $YACCCOM  $YACCFLAGS, $YACCHFI LESUFFI X, $YACCHXXFI LESUFFI X,
$YACCVCGFI LESUFFI X.

Uses: $YACCCOVSTR, $YACCFLAGS, $YACC_GRAPH_FI LE, $YACC_HEADER_FI LE.

Sets construction variables for the zip archiver.
Sets: $ZI P, $ZI PCOM $ZI PCOVPRESSI ON, $ZI PFLAGS, $Z1 PSUFFI X.

Uses: $ZI PCOVBTR.

~

=!t=5CcoNS 307



Appendix D. Functions and
Environment Methods

This appendix contains descriptions of all of the function and construction environment methods in this version of
SCons

Action(action, [output, [var, ...]] [key=value, ...])

env.Action(action, [output, [var, ...]] [key=value, ...])
A factory function to create an Action object for the specifiedact i on. Seethe manpage section " Action Objects"
for a compl ete explanation of the arguments and behavior.

Note that the env. Act i on form of the invocation will expand construction variables in any argument strings,
including theact i on argument, at thetimeit is called using the construction variables in the env construction
environment through which env. Act i on was called. The Act i on global function form delays all variable
expansion until the Action object is actually used.

AddMet hod(obj ect, function, [nane])

env.AddMet hod(f uncti on, [nane])
Addsf unct i on toanobject asamethod. f unct i on will be called with an instance object asthe first argument
as for other methods. If name is given, it is used as the name of the new method, else the name of f uncti on
is used.

When the global function AddMet hod is called, the object to add the method to must be passed as the first
argument; typically this will be Envi r onment , in order to create a method which applies to all construction
environments subsequently constructed. When called using the env. AddMet hod form, the method is added to
the specified construction environment only. Added methods propagate through env. C one calls.

More examples:

# Function to add nust accept an instance argunent.
# The Pyt hon convention is to call this "self".
def ny_nethod(self, arg):

print("nmy_nethod() got", arg)

# Use the global function to add a nmethod to the Environment class:
AddMet hod( Envi r onment, my_net hod)

env = Envi ronnent ()

env. ny_net hod(' arg')

# Use the optional nane argunent to set the name of the nethod:
env. AddMet hod( ny_net hod, ' ot her net hod_nane')
env. ot her _net hod_nane(' anot her arg')

AddOpt i on(ar gument s)
Adds a local (project-specific) command-line option. ar gunent s are the same as those supported by the
add_opt i on method inthe standard Pythonlibrary moduleopt par se, with afew additional capabilitiesnoted
below. See the documentation for opt par se for athorough discussion of its option-processing capabities.

In addition to the arguments and values supported by theopt par se add_opt i on method, AddOpt i on alows
setting the nar gs keyword value to a string consisting of a question mark (' ?' ) to indicate that the option
argument for that option string is optional. If the option string is present on the command line but has no matching
option argument, the value of the const keyword argument is produced as the value of the option. If the option

Iy
=== SCONS 308



Add
env

string is omitted from the command line, the value of the def aul t keyword argument is produced, as usual; if
thereisno def aul t keyword argument in the AddOpt i on call, None is produced.

opt par se recognizes abbreviations of long option names, as long as they can be unambiguously resolved. For
example, if add_opti on iscalled to definea- - devi cenane option, it will recognize - - devi ce, - - dev
and so forth aslong asthereis no other option which could a so match to the same abbreviation. Options added via
AddOpt i on do not support the automatic recognition of abbreviations. Instead, to allow specific abbreviations,
include them as synonyms in the AddOpt i on call itself.

Once a new command-line option has been added with AddOpt i on, the option value may be accessed
using Get Opti on or env. Get Opti on. Set Opt i on is not currently supported for options added with
AddOpt i on.

Help text for an option isacombination of the string suppliedinthehel p keyword argument to AddOpt i on and
information collected from the other keyword arguments. Such help is displayed if the - h command line option
isused (but not with - H). Help for al local optionsis displayed under the separate heading L ocal Options. The
options are unsorted - they will appear in the help text in the order in which the AddOpt i on calls occur.

Example:

AddOpt i on(
'--prefix',
dest='prefix"',
nar gs=1,
type='string',
action='store',
met avar='DI R ,
hel p="instal | ati on prefix"',

)
env = Environment (PREFI X=CGet Opti on("' prefix'))

For that example, the following help text would be produced:

Local Options:
--prefix=D R installation prefix

Help text for local options may be unavailableif the Hel p function has been called, seethe Hel p documentation
for details.

Note

As an artifact of the internal implementation, the behavior of options added by AddOpt i on which
take option arguments is undefined if whitespace (rather than an = sign) is used as the separator on the
command line. Users should avoid such usage; it is recommended to add a note to this effect to project
documentation if the situation is likely to arise. In addition, if the nar gs keyword is used to specify
more than one following option argument (that is, with avalue of 2 or greater), such arguments would
necessarily be whitespace separated, triggering the issue. Developers should not use AddOpt i on this
way. Future versions of SCons will likely forbid such usage.

Post Acti on(t arget, acti on)

AddPost Acti on(t arget, action)

Arranges for the specified act i on to be performed after the specified t ar get has been built. The specified
action(s) may bean Action object, or anything that can be converted into an Action object See the manpage section
"Action Objects" for a complete explanation.

~

'—‘-‘ SCONS 309



When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targetsin thelist.

AddPr eActi on(t arget, action)
env.AddPreAction(target, action)

Arrangesfor the specified act i on to be performed before the specifiedt ar get isbuilt. The specified action(s)
may be an Action object, or anything that can be converted into an Action object See the manpage section "Action
Objects’ for a complete explanation.

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targetsin thelist.

Notethat if any of thetargetsare built in multiple steps, the action will beinvoked just beforethe"final" action that
specifically generates the specified target(s). For example, when building an executabl e program from a specified
source. ¢ fileviaan intermediate object file:

foo = Progran('foo.c')
AddPr eActi on(foo, 'pre_action')

The specified pr e_act i on would be executed before scons calls the link command that actually generates the
executable program binary f 00, not before compiling thef 0o. ¢ fileinto an object file.

Alias(alias, [targets, [action]])
env.Alias(alias, [targets, [action]])

Al

Creates one or more phony targets that expand to one or more other targets. An optional act i on (command) or
list of actions can be specified that will be executed whenever the any of the alias targets are out-of-date. Returns
the Node object representing the alias, which exists outside of any file system. This Node object, or the aliasname,
may be used as a dependency of any other target, including another dias. Al i as can be called multiple timesfor
the same aliasto add additional targetsto the alias, or additional actionsto thelist for thisalias. Aliases are global
even if set through the construction environment method.

Examples:

Alias('install")

Alias('install', "/usr/bin")

Alias(['install', "install-lib"'], "/usr/local/lib")
env.Alias('install', ['/usr/local/bin', '/fusr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env. Alias('update', ['filel', '"file2'], "update_database $SOURCES")

owSubst Excepti ons([ exception, ...])

Specifiesthe exceptionsthat will be allowed when expanding construction variables. By default, any construction
variable expansions that generate a NanmeErr or or | ndexErr or exception will expandtoa'' (an empty
string) and not cause scons to fail. All exceptions not in the specified list will generate an error message and
terminate processing.

If Al l owSubst Excepti ons is called multiple times, each call completely overwrites the previous list of
allowed exceptions.

Example:

# Requires that all construction variabl e names exist.

~

'—‘—' SCONS 310



# (You may wish to do this if you want to enforce strictly
# that all construction variables nust be defined before use.)
Al | owSubst Except i ons()

# Also allow a string containing a zero-division expansi on
#like "${1/ 0}' to evalute to ''.
Al | owSubst Except i ons( | ndexError, NameError, ZeroDi visionError)

Al waysBui | d(target, ...)

env.Al waysBui | d(target, ...)
Marks each givent ar get so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that Al waysBui | d does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of atarget specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to asingle call to Al waysBui | d.

env.Append(key=val, [...])

Appends value(s) intelligently to construction variablesin env. The construction variables and values to add to
them are passed as key=val pairs (Python keyword arguments). env. Append is designed to allow adding
values without having to think about the data type of an existing construction variable. Regular Python syntax
can also be used to manipulate the construction variable, but for that you may need to know the types involved,
for example pure Python lets you directly "add" two lists of strings, but adding a string to a list or alist to a
string requires different syntax - things Append takes care of. Some pre-defined construction variables do have
type expectations based on how SCons will use them: for example $CPPDEFI NES is often a string or alist of
strings, but can also be alist of tuples or adictionary; while L1 BEM TTERis expected to be acallable or list of
calables, and $BUI LDERS is expected to be a dictionary. Consult the documentation for the various construction
variables for more details.

The following descriptions apply to both the Append and Pr epend methods, as well as their Unique variants,
with the differences being the insertion point of the added values and whether duplication is allowed.

val can be almost any type. If env does not have a construction variable named key, then key is simply
stored with avalue of val . Otherwise, val is combinined with the existing value, possibly converting into an
appropriate type which can hold the expanded contents. There are afew specia cases to be aware of. Normally,
when two strings are combined, the result is a new string containing their concatenation (and you are responsible
for supplying any needed separation); however, the contents of $CPPDEFI NES will will be postprocessed by
adding a prefix and/or suffix to each entry when the command line is produced, so SCons keeps them separate
- appending a string will result in a separate string entry, not a combined string. For $CPPDEFI NES. as well
as $LI BS, and the various * PATH variables, SCons will amend the variable by supplying the compiler-specific
syntax (e.g. prepending a - D or / D prefix for $CPPDEFI NES), so you should omit this syntax when adding
values to these variables. Examples (gcc syntax shown in the expansion of CPPDEFI NES):

env = Environment (CXXFLAGS="-std=c11", CPPDEFI NES="RELEASE")

print (f"CXXFLAGS = {env[' CXXFLAGS' ]}, CPPDEFI NES = {env[' CPPDEFINES']}")
# notice including a | eadi ng space i n CXXFLAGS additi on

env. Append( CXXFLAGS=" -0O', CPPDEFI NES="EXTRA")

print (f"CXXFLAGS = {env[' CXXFLAGS' ]}, CPPDEFI NES = {env[' CPPDEFINES']}")
print (" CPPDEFI NES wi || expand to", env.subst('$_CPPDEFFLAGS'))

$ scons -Q

CXXFLAGS = -std=cl1l, CPPDEFI NES = RELEASE

CXXFLAGS = -std=cl11l - O, CPPDEFINES = deque([' RELEASE , ' EXTRA' ])
CPPDEFI NES wi | | expand to - DRELEASE - DEXTRA

scons: ' is up to date.

Iy
=== SCONS 311



Because $CPPDEFI NES is intended for command-line specification of C/C++ preprocessor macros, additional
syntax is accepted when adding to it. The preprocessor accepts arguments to predefine a macro name by itself (-

DFQOOfor most compilers, / DFOOfor Microsoft C++), which givesit animplicit value of 1, or can be given with
areplacement value (- DBAR=TEXT). SCons follows these rules when adding to $CPPDEFI NES:

A string is split on spaces, giving an easy way to enter multiple macros in one addition. Use an = to specify
avalued macro.

A tupleistreated as a valued macro. Use the value None if the macro should not have avalue. It is an error
to supply more than two elements in such atuple.

A listisprocessed in order, adding each item without further interpretation. In this case, space-separated strings
are not split.

A dictionary is processed in order, adding each key:value pair as a valued macro. Use the value None if the
macro should not have avalue.

Examples:

env = Envi r onment ( CPPDEFI NES=" FOO")

print (" CPPDEFI NES =", env[' CPPDEFI NES'])
env. Append( CPPDEFI NES=" BAR=1")

print (" CPPDEFI NES =", env[' CPPDEFI NES'])
env. Append( CPPDEFI NES=[ (" OTHER"', 2)])
print (" CPPDEFI NES =", env[' CPPDEFI NES'])
env. Append( CPPDEFI NES={ " EXTRA": "arg"})
print (" CPPDEFI NES =", env[' CPPDEFI NES'])

print (" CPPDEFI NES wi || expand to", env.subst('$_CPPDEFFLAGS ))

$ scons -Q

CPPDEFI NES = FOO

CPPDEFI NES = deque([' FOO , 'BAR=1'])

CPPDEFI NES = deque([' FOO, 'BAR=1', ('OTHER, 2)])

CPPDEFI NES = deque([' FOO, 'BAR=1', ('OTHER, 2), ('EXTRA', 'arg')])

CPPDEFI NES wi | | expand to - DFCO - DBAR=1 - DOTHER=2 - DEXTRA=ar g

scons:

is up to date.

Examples of adding multiple macros:

env = Environment ()
env. Append( CPPDEFI NES=[ ("ONE", 1), "TWO', ("THREE', )])

pri nt (" CPPDEFI NES =", env[' CPPDEFI NES' ])
env. Append( CPPDEFI NES={"FOUR': 4, "FIVE': None})
pri nt (" CPPDEFI NES =", env[' CPPDEFI NES' ])

print (" CPPDEFI NES wi || expand to", env.subst('$_CPPDEFFLAGS ))

$ scons -Q

CPPDEFI NES
CPPDEFI NES

[("ONE', 1), "TWO, ('THREE ,)]
deque([("ONE', 1), '"TWO, ('THREE ,), ('FOQUR, 4), ('FIVE , None)])

CPPDEFI NES wi | | expand to - DONE=1 - DTWD - DTHREE - DFOUR=4 - DFI VE

scons:

is up to date.

~

'—‘-‘ SCONS 312



env

Changed in version 4.5; clarifined the use of tuples vs. other types, handling is now consistent across the four
functions.

env = Environnent ()
env. Append( CPPDEFI NES=( " MACROL", "MACRO2"))

print (" CPPDEFI NES =", env[' CPPDEFI NES' ])
env. Append( CPPDEFI NES=[ (" MACRCB", "MACRO")])
print (" CPPDEFI NES =", env[' CPPDEFI NES' ])

print (" CPPDEFI NES wi || expand to", env.subst('$ CPPDEFFLAGS ))

$ scons -Q

CPPDEFI NES = (' MACROL', ' MACRO2')

CPPDEFI NES = deque([' MACROL', 'MACR®2', (' MACRGB', 'MACRO4')])
CPPDEFI NES wi || expand to - DMACROL - DVACRO2 - DVACRO3=NACRO4
scons: ".' is up to date.

See $CPPDEFI NES for more details.

Appending astring val to adictonary-typed construction variable entersval as the key in the dictionary, and
None asitsvalue. Using atupletypeto supply akey, val ue only worksfor the special case of $CPPDEFI NES
described above.

Although most combinations of typeswork without needing to know the details, some combinations do not make
sense and Python raises an exception.

When using env. Append to modify construction variables which are path specifications (conventionaly, the
names of such end in PATH), it is recommended to add the values as alist of strings, even if you are only adding
asingle string. The same goes for adding library namesto $LI BS.

env. Append( CPPPATH=[ "#/ i ncl ude"])
Seealso env. AppendUni que, env. Prepend and env. Pr ependUni que.

AppendENVPat h(hane, newpat h, [envnane, sep, del ete_existing=Fal se])

Append path elements specified by newpat h to the given search path string or list name in mapping envnane
in the construction environment. Supplying envnane isoptional: thedefault i sthe execution environment SENV.
Optional sep is used as the search path separator, the default is the platform's separator (0s. pat hsep). A
path element will only appear once. Any duplicates in newpat h are dropped, keeping the last appearing (to
preserve path order). If del et e_exi sti ng isFal se (the default) any addition duplicating an existing path
element isignored; if del et e_exi sti ng is Tr ue the existing value will be dropped and the path element
will be added at the end. To help maintain uniqueness al paths are normalized (using os. pat h. nor npat h
and 0s. pat h. nor ntase).

Example:

print('before:', env['ENV' ][' | NCLUDE ])

i ncl ude _path = '/foo/bar:/foo'

env. AppendENVPat h(' | NCLUDE' , i ncl ude_pat h)
print('after:', env['ENV' ][' I NCLUDE ])

Yields:

bef ore: /foo:/biz

~

'—‘-‘ SCONS 313



after: /biz:/fool/bar:/foo
Seeasoenv. PrependENVPat h.

env.AppendUni que(key=val, [...], [del ete_existing=Fal se])
Append values to construction variables in the current construction environment, maintaining uniqueness. Works
like env. Append, except that values that would become duplicates are not added. If del et e_exi stingis
set to atrue value, then for any duplicate, the existing instance of val isfirst removed, then val is appended,
having the effect of moving it to the end.

Example:

env. AppendUni que( CCFLAGS=' -g', FOO=['fo0.yyy'])
Seeasoenv. Append, env. Prepend and env. Pr ependUni que.

Bui | der (action, [argunents])

env.Bui | der (action, [arguments])
Creates a Builder object for the specified act i on. See the manpage section "Builder Objects' for a complete
explanation of the arguments and behavior.

Notethat theenv. Bui | der () form of theinvocationwill expand construction variablesin any argumentsstrings,
including theact i on argument, at thetimeit is called using the construction variables in the env construction
environment through which env. Bui | der wascaled. The Bui | der form delays all variable expansion until
after the Builder object is actualy called.

CacheDir (cache_dir, custom cl ass=None)

env.CacheDir (cache_dir, custom cl ass=None)
Direct sconsto maintain aderived-file cacheincache_di r . Thederived filesin the cache will be shared among
all the builds specifying thesamecache_di r . Specifyingacache_di r of None disablesderived file caching.

When specifying a custom cl ass which should be a class type which is a subclass of
SCons. CacheDi r. CacheDi r, SCons will internaly invoke this class to use for performing
caching operations. This argument is optional and if left to default None, will use the default
SCons. CacheDi r. CacheDi r class.

Calling the environment method env. CacheDi r limits the effect to targets built through the specified
construction environment. Calling the global function CacheDi r sets a global default that will be used by
all targets built through construction environments that do not set up environment-specific caching by calling
env. CachebDir.

When derived-file caching is being used and scons finds a derived file that needs to be rebuilt, it will first look
in the cache to see if afile with matching build signature exists (indicating the input file(s) and build action(s)
were identical to those for the current target), and if so, will retrieve the file from the cache. scons will report
Retrieved “file' from cache instead of the normal build message. If the derived file is not present in
the cache, sconswill build it and then place a copy of the built file in the cache, identified by its build signature,
for future use.

TheRetrieved “file' from cache messages are useful for human consumption, but less so when
comparing log files between scons runs which will show differences that are noisy and not actualy significant.
To disable, use the - - cache- show option. With this option, scons will print the action that would have been
used to build the file without considering cache retrieval.

Derived-file caching may be disabled for any invocation of scons by giving the - - cache- di sabl e command
line option. Cache updating may be disabled, leaving cache fetching enabled, by giving the - - cache-
readonly.

Iy
=== SCONS 314



If the - - cache- f or ce option is used, scons will place a copy of all derived files in the cache, even if they
already existed and were not built by thisinvocation. Thisisuseful to populate acachethefirsttimeacache _dir
isused for abuild, or to bring a cache up to date after abuild with cache updating disabled (- - cache- di sabl e
or - - cache- r eadonl y) has been done.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of sometool are impossible to predict or prohibitively large.

Note that (at this time) SCons provides no facilities for managing the derived-file cache. It is up to the devel oper
to arrange for cache pruning, expiry, etc. if needed.

Clean(targets, files or _dirs)
env.Cl ean(targets, files_ or_dirs)

env

This specifiesalist of files or directories which should be removed whenever the targets are specified with the -
¢ command line option. The specified targets may be alist or an individual target. Multiple callsto Cl ean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Cl ean method, or as alist.
Cl ean will also accept the return value of any of the construction environment Builder methods. Examples:

The related Nod ean function overrides calling O ean for the same target, and any targets passed to both
functions will not be removed by the - ¢ option.

Examples:

Clean('foo', ['bar', 'baz'])

Clean('dist', env.Program('hello', "hello.c"))
Clean(['foo', '"bar'], 'sonething else to clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

Cl ean(docdir, os.path.join(docdir, projectnane))

.0 one([ key=val, ...])
Returns a separate copy of a construction environment. If there are any keyword arguments specified, they are
added to the returned copy, overwriting any existing values for the keywords.

Example:
env2 = env. d one()
env3 = env. C one( CCFLAGS=' -g')

Additionally, alist of tools and atoolpath may be specified, asin the Envi r onnent constructor:
def MyTool (env):

env[' FOO ] = 'bar'
env4d = env. C one(tool s=[' nsvc', MyTool])

Thepar se_f | ags keyword argument is aso recognized to allow merging command-line style arguments into
the appropriate construction variables (see env. Mer geFl ags).

~

'—‘—' SCONS 315



# create an environnment for conpiling programs that use wxW dgets
wx_env = env. C one(parse_flags='!wx-config --cflags --cxxflags')

Command(t arget, source, action, [key=val, ...])

env

.Command(t arget, source, action, [key=val, ...])
Executes aspecificact i on (or list of actions) to build at ar get fileor filesfromasour ce fileor files. This
is more convenient than defining a separate Builder object for a single special-case build.

The Conmmand function accepts source_scanner, target scanner, source_factory, and
target fact ory keyword arguments. These arguments can be used to specify a Scanner object that will be
used to apply a custom scanner for asource or target. For example, theglobal Di r Scanner object can be used if
any of the sourceswill be directories that must be scanned on-disk for changesto filesthat aren't already specified
in other Builder of function calls. The* _f act or y arguments take a factory function that Command will useto
turn any sources or targets specified as strings into SCons Nodes. See the manpage section "Builder Objects" for
more information about how these arguments work in a Builder.

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified asastring, or a callable Python object; see the manpage section
"Action Objects’ for more complete information. Also note that a string specifying an external command may be
preceded by an at-sign (@ to suppress printing the command in question, or by a hyphen (- ) to ignore the exit
status of the external command.

Examples:

env. Comand(
target='foo0.out',
source='foo0.in",
acti on="$FO0O BU LD < $SOURCES > $TARCGET"

env. Comand(
target =' bar. out',
source="bar.in",
action=["rm-f $TARGET", "$BAR BU LD < $SOURCES > $TARGET"],
ENV={' PATH : '/usr/local /bin/"},

i mport os
def rename(env, target, source):
os.renane(’'.tnp', str(target[0]))

env. Comand(
target =' baz. out',
source='baz.in",
action=["$BAZ BU LD < $SOURCES > .tnp", renane],

)

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifies what type of entriesthey are. If necessary, you can explicitly
specify that targets or source nodes should be treated as directories by using the Di r or env. Di r functions.

Examples:

~

'—‘-‘ SCONS 316



env. Command(' ddd.list', Dir('ddd"), '"Is -1 $SOURCE > $TARCET')

env[' DISTDIR ] = 'destination/directory’
env. Conmand(env.Dir (' $DI STDIR )), None, make_distdir)

Also notethat SConswill usually automatically create any directory necessary to hold atarget file, so you normally
don't need to create directories by hand.

Configure(env, [customtests, conf _dir, log file, config_h])
env.Configure([customtests, conf _dir, log file, config_h])
Creates a Configure object for integrated functionality similar to GNU autoconf. See the manpage section
"Configure Contexts' for a complete explanation of the arguments and behavior.

Deci der (functi on)

env.Deci der (functi on)
Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified f unct i on. f unct i on can be the name of afunction or one of the following strings that specify
the predefined decision function that will be applied:

"ti mest anp- newer"
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's timestamp is newer than
thetarget file's timestamp. Thisisthe behavior of the classic Make utility, and nak e can be used a synonym
forti mest anp- newer .

"ti mest anp- mat ch"
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that thetarget will aso berebuilt if adependency file hasbeen restored to aversion with an earlier timestamp,
such as can happen when restoring files from backup archives.

"content"
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, as determined be performing an checksum on the dependency's contents
and comparing it to the checksum recorded the last time the target was built. MD5 can be used as a synonym
for cont ent , but it is deprecated.

"content-timestanmp"

Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, except that dependencies with a timestamp that matches the last time the
target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar to the
cont ent behavior of always checksumming file contents, with an optimization of not checking the contents
of files whose timestamps haven't changed. The drawback isthat SCons will not detect if afile's content has
changed but its timestamp is the same, as might happen in an automated script that runs a build, updates a
file, and runs the build again, all within a single second. MD5- t i mest anp can be used as a synonym for
content-tinmestanp, butitis deprecated.

Examples:

# Use exact timestanp matches by default.
Deci der (' ti mestanp-mat ch')

# Use hash content signatures for any targets built
# with the attached construction environment.

Iy
=== SCONS 317



Def
env

env. Deci der (' content')

In addition to the above already-available functions, the f unct i on argument may be a Python function you
supply. Such afunction must accept the following four arguments:

dependency
The Node (file) which should causethet ar get to berebuilt if it has "changed" since the last tmet ar get
was built.

t ar get
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed.”

prev_ni
Stored information about the state of the dependency the last time the t ar get was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

repo_node
If set, use this Node instead of the one specified by dependency to determine if the dependency has
changed. This argument is optional so should be written as a default argument (typically it would be written
asrepo_node=None). A caler will normally only set thisif the target only existsin a Repository.

Thef unct i on should return a value which evaluates Tr ue if the dependency has "changed" since the last
time the t ar get was built (indicating that the target should be rebuilt), and a value which evaluates Fal se
otherwise (indicating that the target should not be rebuilt). Note that the decision can be made using whatever
criteria are appopriate. Ignoring some or al of the function arguments is perfectly normal.

Example:

def ny_deci der (dependency, target, prev_ni, repo_node=None):
return not os.path.exists(str(target))

env. Deci der (ny_deci der)

ault(target[, ...])

Defaul t(target[, ...])

Specify default targets to the SCons target selection mechanism. Any call to Def aul t will cause SCons to use
the defined default target list instead of its built-in algorithm for determining default targets (see the manpage
section "Target Selection”).

t ar get may be one or more strings, alist of strings, aNodeLi st asreturned by aBuilder, or None. A string
t ar get may be the name of afile or directory, or atarget previously defined by acal to Al i as (defining the
alias later will still create the alias, but it will not be recognized as a default). Callsto Def aul t are additive. A
t ar get of None will clear any existing default target list; subsequent calls to Def aul t will add to the (now
empty) default target list like normal.

Both forms of this call affect the same global list of default targets; the construction environment method applies
construction variable expansion to the targets.

The current list of targets added using Def aul t isavailablein the DEFAULT_TARGETS list (see below).
Examples:
Default('foo', 'bar', 'baz')

env. Default(['a", "b', '"c'])
hell o = env. Progran(' hell o', "hello.c")

~

'—‘—' SCONS 318



Def

Dep
env

env

env

env. Def aul t (hel | o)

aul t Envi ronnent ([ **kwar gs])

I nstantiates and returnsthe default construction environment object. The default environment isused internally by
SConsin order to execute many of the global functionsinthislist (that is, those not called as methods of a specific
construction environment). It is not mandatory to call Def aul t Envi r onnent : the default environment will
be instantiated automatically when the build phase begins if the function has not been called, however calling it
explicitly gives the opportunity to affect and examine the contents of the default environment.

The default environment is a singleton, so the keyword arguments affect it only on the first call, on subsequent
calls the already-constructed object is returned and any keyword arguments are silently ignored. The default
environment can be modified after instantiation in the same way as any construction environment. Modifying the
default environment has no effect on the construction environment constructed by an Envi r onnent or Cl one
cal.

ends(t arget, dependency)

.Depends(t ar get, dependency)

Specifies an explicit dependency; the t ar get will be rebuilt whenever the dependency has changed. Both
the specified t ar get and dependency can be a string (usualy the path name of afile or directory) or Node
objects, or alist of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for thefile.

Example:

env. Depends(' foo', 'other-input-file-for-foo')

nylib = env.Library('mylib.c")
installed |lib = env.Install ('lib'", mylib)
bar = env. Progran(' bar.c")

# Arrange for the library to be copied into the installation
# directory before trying to build the "bar" program

# (Note that this is for exanple only. A "real" library

# dependency woul d normal |y be configured through the $LIBS
# and $LI BPATH vari abl es, not using an env. Depends() call.)

env. Depends(bar, installed_Ilib)

.Det ect (pr ogs)

Find an executable from one or more choices: pr ogs may be a string or a list of strings. Returns the first
value from pr ogs that was found, or None. Executable is searched by checking the paths in the execution
environment (env[ ' ENV' ] [ ' PATH ] ). On Windows systems, additionally appliesthefilename suffixesfound
in the execution environment (env[' ENV' ] [ ' PATHEXT' ]) but will not include any such extension in the
return value. env. Det ect isawrapper around env. Wher el s.

.Dictionary([vars])

Returns a dictionary object containing the construction variables in the construction environment. If there are any
arguments specified, the values of the specified construction variables are returned as a string (if one argument)
or asalist of strings.

Example:

cvars = env.Dictionary()
cc_values = env.Dictionary('CC, 'CCFLAGS , 'CCCOM )

~

'—‘-‘ SCONS 319



Dir(name, [directory])

env.Dir (name, [directory])
Returns Directory Node(s). A Directory Node is an object that represents a directory. nane can be arelative or
absolute path or alist of such paths. di r ect or y isan optional directory that will be used asthe parent directory.
If nodi rect ory isspecified, the current script's directory is used as the parent.

If name isasingle pathname, the corresponding node isreturned. If nane isalist, SConsreturnsalist of nodes.
Construction variables are expanded in nane.

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see manpage section
"File and Directory Nodes' for more information.

env.Dunp([ key], [format])
Serializes construction variables to a string. The method supports the following formats specified by f or mat :

pretty
Returns a pretty printed representation of the environment (if f or mat is not specified, thisisthe default).

json
Returns a JSON-formatted string representation of the environment.

If key isNone (the default) the entire dictionary of construction variablesis serialized. If supplied, it istaken as
the name of a construction variable whose value is serialized.

This SConstruct:

env=Envi r onnment ()
print (env. Dunp(' CCCOM ) )

will print:

"$CC -c -0 $TARGET $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS $SOURCES'

While this SConstruct:

env = Environment ()
print (env. Dunp())

will print:

' ARCOM : ' $AR $ARFLAGS $TARGET $SOURCES\ n$RANLI B $RANLI BFLAGS $TARGET' ,
"ARFLAGS : ['r'],

"AS . 'as',
" ASCOM : ' $AS $ASFLAGS -0 $TARGET $SCURCES',

' ASFLAGS : [],

Ensur ePyt honVer si on(haj or, m nor)
Ensure that the Python version is at least maj or .nmi nor . This function will print out an error message and exit
SCons with anon-zero exit code if the actual Python version is not late enough.

Example:

Iy
=== SCONS 320



Ensur ePyt honVer si on( 2, 2)

Ensur eSConsVer si on(maj or, mnor, [revision])
Ensure that the SCons version is at least maj or . mi nor, or maj or. m nor. revision.if revisionis
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Examples:

Ensur eSConsVer si on( 0, 14)

Ensur eSConsVer si on( 0, 96, 90)

Envi ronnent ([ key=val ue, ...])

env.Envi ronnent ([ key=val ue, ...])
Return anew construction environment initialized with the specified key=val ue pairs. The keyword arguments
parse_fl ags, pl atform tool path, t ool s and vari abl es are also specialy recognized. See the
manpage section " Construction Environments' for more details.

Execut e(action, [actionargs ...])

env.Execut e(action, [actionargs ...])
Executes an Action. act i on may be an Action object or it may be a command-line string, list of commands,
or executable Python function, each of which will first be converted into an Action object and then executed.
Any additional argumentsto Execut e are passed on tothe Act i on factory function which actually createsthe
Action object (see the manpage section Action Objects for a description). Example:

Execut e(Copy('file.out', "file.in"))

Execut e performsitsactionimmediately, as part of the SConscript-reading phase. There are no sourcesor targets
declared in an Execut e call, so any objects it manipulates will not be tracked as part of the SCons dependency
graph. In the example above, neither fi | e. out norfi | e. i n will betracked objects.

Execut e returns the exit value of the command or return value of the Python function. scons prints an error
message if the executed act i on fails (exits with or returns anon-zero value), however it does not, automatically
terminate the build for such a failure. If you want the build to stop in response to a failed Execut e call, you
must explicitly check for a non-zero return value:

i f Execute("nkdir sub/dir/ectory"):
# The nkdir failed, don't try to build.
Exit (1)

4

it(value])
Thistells sconsto exit immediately with the specified val ue. A default exit value of O (zero) isused if no value
is specified.

Export ([vars...], [key=value...])

env.Export ([vars...], [key=value...])
Exports variables from the current SConscript file to a global collection where they can be imported by other
SConscript files. var s may be one or more strings representing variable namesto be exported. If astring contains
whitespace, it issplit into separate strings, as if multiple string arguments had been given. A var s argument may
also be adictionary, which can be used to map variables to different names when exported. Keyword arguments
can be used to provide names and their values.

Iy
=== SCONS 321



Fi l
env

Fin
env

Fin
env

Export calls are cumulative. Specifying a previously exported variable will overwrite the earlier value. Both
local variables and global variables can be exported.

Examples:

env = Environnent ()
# Make env available for all SConscript files to Inport().
Export ("env")

package = ' nmy_nane'
# Make env and package avail able for all SConscript files:.
Export ("env", "package")

# Make env and package avail able for all SConscript files:
Export ([ "env", "package"])

# Make env avail abl e using the nane debug:
Export (debug=env)

# Make env avail abl e using the nane debug:
Export ({"debug": env})

Note that the SConscr i pt function supports an expor t s argument that allows exporting a variable or set of
variablesto a specific SConscript file or files. See the description below.

e(nane, [directory])

File(mane, [directory])

Returns File Node(s). A File Nodeis an object that represents afile. nane can be arelative or absolute path or a
list of such paths. di r ect or y isan optional directory that will be used asthe parent directory. If nodi r ect ory
is specified, the current script's directory is used as the parent.

If name isasingle pathname, the corresponding node isreturned. If nane isalist, SConsreturnsalist of nodes.
Construction variables are expanded in nane.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see manpage section "File and Directory
Nodes' for more information.

dFile(file, dirs)

FindFile(file, dirs)

Search for fi | e in the path specified by di rs. di rs may be alist of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dirl", '"dir2'])

di nstal | edFi | es()

JFindlnstal l edFil es()

Returnsthe list of targetsset up by thel nst al | or | nst al | As builders.

This function serves as a convenient method to select the contents of a binary package.

~

'—‘-‘ SCONS 322



Example:

Install ('/bin', ['executable a', 'executable b'])

# wWll return the file node |i st
# ['/bin/executable a', '/bin/executable b']
Fi ndl nstal | edFi | es()

Install ("/1ib', ['"sone_library'])

# wWll return the file node |i st
# ['/bin/executable a', '/bin/executable b', '/lib/some_library']
Fi ndl nstal | edFi | es()

Fi ndPat hDi r s(vari abl e)
Returns afunction (actually a callable Python object) intended to be used asthe pat h_f unct i on of a Scanner
object. The returned object will look up the specified var i abl e in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $LI BPATH,
etc.).

Note that use of Fi ndPat hDi rs is generally preferable to writing your own pat h_f uncti on for the
following reasons. 1) The returned list will contain al appropriate directories found in source trees (when
Vari ant Di r is used) or in code repositories (when Reposi t ory or the - Y option are used). 2) scons will
identify expansions of var i abl e that evaluate to the same list of directories as, in fact, the samelist, and avoid
re-scanning the directories for files, when possible.

Example:

def ny_scan(node, env, path, arg):
# Code to scan file contents goes here...
return include files

scanner = Scanner (nane = 'myscanner',
function = my_scan,
pat h_functi on = Fi ndPat hDi rs(' MYPATH ))

Fi ndSour ceFi | es(node=""."")
env.Fi ndSour ceFi | es(node=""."")
Returnsthe list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree

starting at the optional argument node which defaults to the ™."'-node. It will then return all leaves of node.
These are all children which have no further children.

This function is a convenient method to select the contents of a Source Package.
Example:

Program(' src/ main_a.c')

Program(' src/ main_b.c")

Program(' main_c.c')

# returns ["main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
Fi ndSour ceFi | es()

Iy
=== SCONS 323



# returns ['src/main_b.c', "src/main_a.c' |
Fi ndSour ceFil es(' src')

Asyou can see build support files (SConstruct in the above example) will also be returned by this function.

Fl att en(sequence)

env.Fl att en(sequence)
Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elementsin any sequence. This can be helpful for collecting the lists returned by
callsto Builders; other Builders will automatically flatten lists specified asinput, but direct Python manipulation
of these lists does not.

Examples:

f oo
bar

oj ect (' foo.c')
oj ect (' bar.c')

# Because " foo' and “bar' are lists returned by the Cbject() Buil der,
# “objects' will be a list containing nested |ists:
objects = ['fl.0', foo, 'f2.0', bar, 'f3.0']

# Passing such a list to another Builder is all right because
# the Builder will flatten the |list automatically:
Pr ogram(source = obj ects)

# I f you need to nmanipulate the list directly using Python, you need to
# call Flatten() yourself, or otherw se handl e nested lists:
for object in Flatten(objects):

print(str(object))

Get Bui | dFai | ur es()
Returnsalist of exceptionsfor the actionsthat failed while attempting to build targets. Each element in the returned
listisaBui | dEr r or object with the following attributes that record various aspects of the build failure:

. node The node that was being built when the build failure occurred.

. st at us The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

. errstr The SCons error string describing the build failure. (Thisis often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

. fi |l ename The name of the file or directory that actually caused the failure. This may be different from the
. node attribute. For example, if an attempt to build atarget named sub/ di r / t ar get failsbecausethesub/

di r directory could not be created, then the . node attribute will besub/ di r/ t ar get butthe. fil enane
attribute will be sub/ di r.

. execut or The SCons Executor object for the target Node being built. This can be used to retrieve the
construction environment used for the failed action.

.acti on The actual SCons Action object that failed. This will be one specific action out of the possible list of
actions that would have been executed to build the target.

. command The actual expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Iy
=== SCONS 324



Notethat the Get Bui | dFai | ur es functionwill alwaysreturn an empty list until any build failure has occurred,
which meansthat Get Bui | dFai | ur es will dwaysreturn an empty list whilethe SConscr i pt filesarebeing
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python at exi t . r egi st er () function. Example:

i mport atexit

def print_build failures():
from SCons. Scri pt inport GetBuil dFail ures
for bf in GetBuildFailures():
print("% failed: %" % (bf.node, bf.errstr))

atexit.register(print_build fail ures)

GetBuildPath(file, [...])

env.GetBui | dPath(file, [...])
Returns the scons path name (or names) for the specified f i | e (or files). The specified fi | e or files may be
scons Nodes or strings representing path names.

Get LaunchDi r ()
Returns the absol ute path name of the directory from which sconswasinitially invoked. This can be useful when
usingthe- u, - Uor - Doptions, which internally change to the directory in which the SConst r uct fileisfound.

Get Opt i on(nane)

env.Get Opt i on(nane)
Query the value of settable options which may have been set on the command line, or by using the Set Opt i on
function. The value of the option is returned in a type matching how the option was declared - see the
documentation for the corresponding command line option for information about each specific option.

nane can be an entry from the following table, which shows the corresponding command line arguments that
could affect the value. nane can be also be the destination variable name from a project-specific option added
using the AddOpt i on function, aslong as that addition has been processed prior to the Get Opt i on cal inthe
SConscri pt files.

Query name Command-line options Notes

cache_debug --cache-debug

cache_di sabl e --cache-di sabl e, --no-
cache

cache_force --cache-force, --cache-
popul at e

cache_readonly --cache-readonly

cache_show --cache-show

cl ean -c,--cl ean,--renove

clinmb _up -D-U-u--up--search_up

config --config

debug - -debug

directory -C --directory

di skcheck - -di skcheck

duplicate --duplicate

Iy
=== SCONS 325



Query name Command-line options Notes

enabl e_virtual env --enabl e-virtual env

experi nment al - -experi nment al since 4.2

file -f, --file, --makefile, --
sconstruct

hash_f or mat --hash- f or mat since 4.2

hel p

-h,--help

i gnore_errors

-i,--ignore-errors

i gnore_vi rtual env

--ignore-virtual env

i mplicit_cache

--inplicit-cache

i nplicit_deps_changed

--inplicit-deps-changed

implicit_deps_unchanged |--inplicit-deps-
unchanged
i nclude_dir -1,--include-dir

i nstal |l _sandbox

--install -sandbox

Available only if thei nst al | tool
has been called

keep_goi ng -k, - - keep-goi ng

max_drift --max-drift

md5_chunksi ze --hash-chunksi ze, --md5- |--hash-chunksi ze since4.2
chunksi ze

no_exec -n, --no-exec, --just-

print,--dry-run,--recon

no_progr ess

-Q

num j obs

-j,--jobs

package type

- - package-type

Available only if the packagi ng
tool has been called

profile_file

--profile

question

-g,--question

random

--random

repository

-Y,--repository,--srcdir

sil ent

-s,--silent,--quiet

site dir

--site-dir,--no-site-dir

stack_si ze

--stack-si ze

taskmastertrace_file

--taskmastertrace

tree_printers

--tree

war n

--warn, - -war ni ng

A ob(pattern,
env.d ob(pattern,

[ ondi sk=Tr ue,

[ ondi sk=Tr ue,

sour ce=Fal se,
sour ce=Fal se,

stri ngs=Fal se,
strings=Fal se,

excl ude=None])
excl ude=None])

Returns a possibly empty list of Nodes (or strings) that match pathname specification pat t er n. pat t er n can
be absolute, top-relative, or (most commonly) relative to the directory of the current SConscri pt file. @ ob
matches both files stored on disk and Nodes which SCons already knows about, even if any corresponding fileis
not currently stored on disk. The evironment method form (env. A ob) performs string substitiononpat t er n

Iy
=== SCONS

326



and returns whatever matches the resulting expanded pattern. The results are sorted, unlike for the similar Python
gl ob. gl ob function, to ensure build order will be stable.

pat t er n can contain POSI X -style shell metacharacters for matching:

Pattern Meaning

* matches everything

? matches any single character

[ seq] matches any character in seq (can be alist or arange).
[!'seq] matches any character not in seq

For a literal match, wrap the metacharacter in brackets to escape the norma behavior. For example, ' [ ?]"'
matches the character ' ?" .

Filenames starting with a dot are specially handled - they can only be matched by patterns that start with a dot
(or have a dot immediately following a pathname separator character, or slash), they are not not matched by the
metacharacters. M etacharacter matches also do not span directory separators.

@ ob understands repositories (see the Reposi t or y function) and source directories (seethe Var i ant Di r
function) and returns aNode (or string, if so configured) match in the local (SConscript) directory if a matching
Node is found anywhere in a corresponding repository or source directory.

If the optional ondi sk argument evaluates false, the search for matches on disk is disabled, and only matches
from already-configured File or Dir Nodes are returned. The default isto return Nodes for matcheson disk aswell.

If the optional sour ce argument evaluatestrue, and the local directory isavariant directory, then G ob returnes
Nodes from the corresponding source directory, rather than the local directory.

If the optional st ri ngs argument evaluates true, G ob returns matches as strings, rather than Nodes. The
returned strings will be relative to the local (SConscript) directory. (Note that while this may make it easier
to perform arbitrary manipulation of file names, it loses the context SCons would have in the Node, o if the
returned strings are passed to a different SConscri pt file, any Node trandation there will be relative to that
SConscri pt directory, not to the original SConscr i pt directory.)

The optional excl ude argument may be set to a pattern or alist of patterns descibing files or directoriesto filter
out of the match list. Elements matching a least one specified pattern will be excluded. These patterns use the
same syntax asfor pat t er n.

Examples:

Program("foo", dob("*.c"))

Zip("/tnmp/everything”, dob(".??*") + Gob("*"))

sources = @ ob("*.cpp", exclude=["os_* specific_*.cpp"]) \
+ dob("os % specific_*.cpp" % current OS)

Hel p(t ext, append=Fal se)

env.Hel p(t ext, append=Fal se)
Specifiesalocal help messageto be printed if the- h argument isgiven to scons. Subsequent callsto Hel p append
t ext tothe previously defined local help text.

For the first call to Hel p only, if append is Fal se (the default) any local help message generated through
AddOpt i on callsisreplaced. If append isTr ue, t ext isappended to the existing help text.

Iy
=== SCONS 327



| gnore(t arget, dependency)

env.l gnore(t arget, dependency)
Ignores dependency when deciding if t ar get needsto berebuilt. t ar get and dependency can each be
asingle filename or Node or alist of filenames or Nodes.

| gnor e can aso be used to remove a target from the default build by specifying the directory the target will
bebuiltinast ar get and the file you want to skip selecting for building asdependency. Note that this only
removes the target from the default target selection algorithm: if it is a dependency of another object being built
SCons till builds it normally. See the third and forth examples below.

Examples:

env. Il gnore(' foo', 'foo.c')
env.lgnore('bar', ['barl.h', "bar2.h'])
env.lgnore('.', 'foobar.obj")

env. |l gnore(' bar', 'bar/foobar.obj")

| mport(vars...)

env.l nport (vars...)
Imports variables into the current SConscript file. var s must be strings representing names of variables which
have been previously exported either by the Export function or by the expor t s argument to SConscri pt .
Variables exported by SConscri pt take precedence. Multiple variable names can be passed to | nport as
separate arguments or as words in a space-separated string. Thewildcard " * " can be used to import all available
variables.

Examples:

| mport ("env")

| mport ("env", "variable")
| mport (["env", "variable"])
[ mport ("*")

Literal (string)
env.Literal (string)
The specified st ri ng will be preserved as-is and not have construction variables expanded.

Local (t argets)

env.Local (t argets)
The specified t ar get s will have copies made in the local tree, even if an aready up-to-date copy existsin a
repository. Returns alist of the target Node or Nodes.

env.Mer geFl ags(arg, [unique])
Merges values from ar g into construction variables in the current construction environment. If ar g is not a
dictionary, it is converted to one by calling env. Par seFl ags on the argument before the values are merged.
Note that ar g must be a single value, so multiple strings must be passed in as a list, hot as separate arguments
toenv. Mer geFl ags.

If uni que is true (the default), duplicate values are not stored. When eliminating duplicate values, any
construction variables that end with the string PATH keep the left-most unique value. All other construction
variables keep the right-most unique value. If uni que isfalse, values are added even if they are duplicates.

Examples:

# Add an optinization flag to $CCFLAGS.

Iy
=== SCONS 328



env. Mer geFl ags(' - 33')

# Conbi ne the flags returned fromrunni ng pkg-config with an optim zation
# flag and nerge the result into the construction vari abl es.
env. MergeFl ags([' ! pkg-config gtk+-2.0 --cflags', '-Q3'])

# Combi ne an optimzation flag with the flags returned fromrunni ng pkg-config
# twice and nmerge the result into the construction vari abl es.
env. Mer geFl ags(

e
"I pkg-config gtk+2.0 --cflags --libs',
"I pkg-config |ibpngl2 --cflags --1ibs',
]
)
NoCache(target, ...)
env.NoCache(target, ...)

Specifies a list of files which should not be cached whenever the CacheDi r method has been activated. The
specified targets may be alist or an individual target.

Multiple files should be specified either as separate arguments to the NoCache method, or as alist. NoCache
will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

NoCache(' foo. el f')
NoCache(env. Program(' hello', 'hello.c"))

NoCl ean(target, ...)

env.NoCl ean(target, ...)
Specifies alist of files or directories which should not be removed whenever the targets (or their dependencies)
are specified with the - ¢ command line option. The specified targets may bealist or an individual target. Multiple
callsto NoCl ean arelegal, and prevent each specified target from being removed by callsto the - ¢ option.

Multiplefiles or directories should be specified either as separate argumentsto the NoCl ean method, or asalist.
NoCl ean will also accept the return value of any of the construction environment Builder methods.

CallingNoCl ean for atarget overridescallingCl ean for the sametarget, and any targets passed to both functions
will not be removed by the - ¢ option.

Examples:

NoCl ean(' foo. el f')
NoCl ean(env. Progran{' hell o', "hello.c"))

env.Par seConfi g(command, [function, unique])
Updates the current construction environment with the values extracted from the output of running external
conmand, by passing it to ahelper f unct i on. command may be a string or alist of strings representing the
command anditsarguments. If f unct i onisomittedor None, env. Mer geFl ags isused. By default, duplicate
values are not added to any construction variables; you can specify uni que=Fal se to allow duplicate values
to be added.

Iy
=== SCONS 329



Par
env

env

comand is executed using the SCons execution environment (that is, the construction variable $ENV in
the current construction environment). If command needs additional information to operate properly, that
needs to be set in the execution environment. For example, pkg-config may need a custom value set in the
PKG_CONFI G_PATH environment variable.

env. Mer geFl ags needs to understand the output produced by command in order to distribute it to
appropriate construction variables. env. Mer geFl ags uses a separate function to do that processing - see
env. Par seFl ags for the details, including a a table of options and corresponding construction variables. To
provide aternative processing of the output of conmand, you can suppply a custom f unct i on, which must
accept three arguments: the construction environment to modify, a string argument containing the output from
running conmand, and the optional uni que flag.

seDepends(fil enane, [nust_exist, only_one])

.Par seDepends(fi |l enane, [nust_exist, only one])

Parsesthecontentsof f i | enane asalist of dependenciesinthe style of Make or mkdep, and explicitly establishes
all of the listed dependencies.

By default, it is not an error if f i | enane does not exist. The optional must _exi st argument may be set to
Tr ue to have SConsraise an exception if the file does not exist, or is otherwise inaccessible.

The optional onl y_one argument may be set to Tr ue to have SCons raise an exception if the file contains
dependency information for more than one target. This can provide a small sanity check for files intended to be
generated by, for example, the gcc - Mflag, which should typically only write dependency information for one
output fileinto a corresponding . d file.

fil enane and al of thefileslisted therein will beinterpreted relative to the directory of the SConscr i pt file
which callsthe Par seDepends function.

ParseFl ags(fl ags, ...)

Parses one or more strings containing typical command-line flags for GCC-style tool chains and returns a
dictionary with the flag values separated into the appropriate SCons construction variables. Intended as a
companiontotheenv. Mer geFl ags method, but allowsfor the valuesin the returned dictionary to be modified,
if necessary, before merging them into the construction environment. (Note that env. Mer geFl ags will call
this method if its argument is not adictionary, so it is usually not necessary to call env. Par seFl ags directly
unless you want to manipulate the values.)

If the first character in any string is an exclamation mark (! ), the rest of the string is executed as a command,
and the output from the command is parsed as GCC tool chain command-line flags and added to the resulting
dictionary. This can be used to call a*- confi g command typical of the POSIX programming environment
(for example, pkg-config). Note that such acommand is executed using the SCons execution environment; if the
command needs additional information, that information needs to be explicitly provided. See Par seConfi g
for more details.

Flag values are translated according to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LI NKFLAGS
-D CPPDEFI NES

- f ramewor k FRAMEWORKS
-framewor kdi r= FRAMEWORKPATH
-fmerge-al |l -constants CCFLAGS, LI NKFLAGS
- fopennp CCFLAGS, LI NKFLAGS
-fsanitize CCFLAGS, LI NKFLAGS
-i ncl ude CCFLAGS

-i macr os CCFLAGS

~

'—‘—' SCONS 330



-i sysr oot CCFLAGS, LI NKFLAGS
-isystem CCFLAGS

-iquote CCFLAGS

-idirafter CCFLAGS

- CPPPATH

- LI BS

-L LI BPATH

- Mo- cygw n CCFLAGS, LI NKFLAGS
- mav ndows LI NKFLAGS

- opennp CCFLAGS, LI NKFLAGS
- pt hread CCFLAGS, LI NKFLAGS
-std= CFLAGS

- W, ASFLAGS, CCFLAGS
-W, -rpat h= RPATH

-W, -R RPATH

-W, -R RPATH

-W, LI NKFLAGS

- W, CPPFLAGS

- CCFLAGS

+ CCFLAGS, LI NKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LI BS
construction variable.

Examples (all of which produce the same result):

dict = env.ParseFl ags('-O2 -Df oo -Dbar=1")

dict = env.ParseFlags('-O', '-Dfoo', '-Dbar=1")
dict = env.ParseFlags(['-O2', '-Dfoo -Dbar=1'])
dict = env.ParseFlags('-', 'lecho -Dfoo -Dbar=1")

Pl at f or m(pl at)

env.Pl at f or mpl at)
When called as a global function, returns a callable platform object selected by pl at (defaults to the detected
platform for the current system) that can be used to initialize a construction environment by passing it as the
pl at f or mkeyword argument to the Envi r onnment function.

Example:

env = Environment (pl atform=Pl atfornm('wi n32'))
When called as a method of an environment, calls the platform object indicated by pl at to update that
environment.
env. Pl at f or m(' posi x')
See the manpage section "Construction Environments' for more details.
Preci ous(target, ...)
env.Preci ous(target, ...)

Marks each given t ar get as precious so it is not deleted before it is rebuilt. Normally scons deletes a target
before building it. Multiple targets can be passed into asingle call to Pr eci ous.

Iy
=== SCONS 331



env.Prepend(key=val , [...])
Prepend values to construction variables in the current construction environment, Workslikeenv. Append (see
for details), except that values are added to the front, rather than the end, of any existing value of the construction
variable

Example:

env. Prepend( CCFLAGS='-g ', FOO=['foo0.yyy'])
Seeasoenv. Append, env. AppendUni que and env. Pr ependUni que.

env.Pr ependENVPat h(nane, newpat h, [envnane, sep, del ete_existing=True])

Prepend path elements specified by newpat h to the given search path string or list name in mapping envnane
inthe construction environment. Supplying envnane isoptional: thedefault isthe execution environment SENV.
Optional sep is used as the search path separator, the default is the platform's separator (0s. pat hsep). A path
element will only appear once. Any duplicatesin newpat h are dropped, keeping the first appearing (to preserve
path order). If del et e_exi sti ng is Fal se any addition duplicating an existing path element is ignored;
if del et e_exi sting isTrue (the default) the existing value will be dropped and the path element will be
inserted at the beginning. To help maintain uniqueness all paths are normalized (using os. pat h. nor npat h
and os. pat h. nor ntase).

Example:

print('before:', env['ENV' ][' | NCLUDE ])

i ncl ude _path = '/foo/bar:/foo'

env. PrependENVPat h(' | NCLUDE' , i ncl ude_pat h)
print('after:', env['ENV' ][' I NCLUDE ])

Yields:

bef ore: /biz:/foo
after: /fool/bar:/foo:/biz

Seealso env. AppendENVPat h.

env.PrependUni que(key=val, [...], [del ete_existing=Fal se])
Prepend valuesto construction variables in the current construction environment, maintaining uniqueness. Works
like env. Append, except that values are added to the front, rather than the end, of the construction variable,
and values that would become duplicates are not added. If del et e_exi st i ng is set to atrue value, then for
any duplicate, the existing instance of val isfirst removed, then val isinserted, having the effect of moving
it to the front.

Example:

env. PrependUni que( CCFLAGS='-g', FOO=['foo0.yyy'])
Seeasoenv. Append, env. AppendUni que and env. Pr epend.

Progress(cal | able, [interval])

Progress(string, [interval, file, overwite])

Progress(list_of _strings, [interval, file, overwite])
Allows SConsto show progress made during the build by displaying astring or calling afunction while evaluating
Nodes (e.g. files).

Iy
=== SCONS 332



If the first specified argument is a Python callable (a function or an object that hasa ___cal | __ method), the
functionwill becalledonceeveryi nt er val timesaNodeisevaluated (default 1). Thecallablewill be passed the
evaluated Node asitsonly argument. (For future compatibility, it'sagood ideatoaso add * ar gs and* * kwar gs
as arguments to your function or method signatures. This will prevent the code from breaking if SCons ever
changes the interface to call the function with additional argumentsin the future.)

An example of asimple custom progress function that prints a string containing the Node name every 10 Nodes:
def ny_progress_function(node, *args, **kwargs):
print (' Eval uati ng node %!' % node)

Progress(my_progress_function, interval =10)

A more complicated example of acustom progress display object that prints a string containing a count every 100
evaluated Nodes. Notetheuseof \ r (acarriagereturn) at the end so that the string will overwriteitself onadisplay:

i mport sys
cl ass ProgressCount er (object):
count = 0
def _ call__(self, node, *args, **kw):

sel f.count += 100
sys.stderr.wite('Eval uated % nodes\r' % sel f.count)

Pr ogress(ProgressCounter (), interval =100)

If thefirst argument to Pr ogr ess isastring or list of strings, it istaken astext to be displayed every i nt er val
evaluated Nodes. If the first argument is alist of strings, then each string in the list will be displayed in rotating
fashion every i nt er val evaluated Nodes.

The default is to print the string on standard output. An alternate output stream may be specified withthefi | e
keyword argument, which the caller must pass already opened.

The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

i mport sys
Progress('.', interval =100, fil e=sys.stderr)

If the string contains the verbatim substring $TARGET; , it will be replaced with the Node. Note that, for
performance reasons, this is not a regular SCons variable substition, so you can not use other variables or use
curly braces. The following example will print the name of every evaluated Node, using a carriage return) (\ r )
to cause each line to overwritten by the next line, and the over wr i t e keyword argument (default Fal se) to
make sure the previously-printed file name is overwritten with blank spaces:

i mport sys
Progress(' $TARCET\r', overwrite=True)

A list of strings can be used to implement a" spinner” on the user's screen asfollows, changing every five evaluated
Nodes:

Progress(['-\r", "\\\r', "|\r", "/\r'], interval =5)

Iy
=== SCONS 333



Pseudo(target, ...)

env.Pseudo(target, ...)
This indicates that each givent ar get should not be created by the build rule, and if the target is created, an
error will be generated. Thisis similar to the gnu make .PHONY target. However, in the vast majority of cases,
an Al i as is more appropriate. Multiple targets can be passed in to asingle call to Pseudo.

PyPackageDi r (modul enane)

env.PyPackageDi r (nodul enane)
ThisreturnsaDirectory Node similar to Dir. The python module/ packageislooked up and if located the directory
is returned for the location. modul enare Is a named python package / module to lookup the directory for it's
location.

If modul enane isalist, SConsreturnsalist of Dir nodes. Construction variablesare expandedinnodul enane.

env.Repl ace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env. Repl ace( CCFLAGS=' -g', FOO='f 00. xxx")

Reposi t ory(di rect ory)

env.Reposi tory(directory)
Specifiesthat di r ect or y isarepository to be searched for files. Multiple callsto Reposi t or y arelegal, and
each one adds to the list of repositories that will be searched.

To scons, arepository isacopy of the source tree, from the top-level directory on down, which may contain both
sourcefilesand derived filesthat can be used to build targetsin thelocal sourcetree. The canonical examplewould
be an official sourcetree maintained by anintegrator. If the repository contains derived files, then the derived files
should have been built using scons, so that the repository contains the necessary signature information to allow
sconsto figure out when it isappropriate to usetherepository copy of aderivedfile, instead of building onelocally.

Note that if an up-to-date derived file aready exists in a repository, scons will not make a copy in the local
directory tree. In order to guarantee that alocal copy will be made, usethe Local method.

Requi res(target, prerequisite)

env.Requires(target, prerequisite)
Specifies an order-only relationship between the specified target file(s) and the specified prerequisite file(s). The
prerequisite file(s) will be (re)built, if necessary, before the target file(s), but the target file(s) do not actually
depend on the prerequisites and will not be rebuilt simply because the prerequisite file(s) change.

Example:
env. Requires('foo', 'file-that-nust-be-built-before-foo')
Return([vars..., stop=True])

Return to the calling SConscript, optionally returning the values of variables named in var s. Multiple strings
contaning variable names may be passed to Ret ur n. A string containing white space is split into individual
variable names. Returns the value if one variable is specified, else returns a tuple of values. Returns an empty
tupleif var s is omitted.

By default Ret ur n stops processing the current SConscript and returnsimmediately. Theoptional st op keyword
argument may be set to a false value to continue processing the rest of the SConscript file after the Ret ur n
call (this was the default behavior prior to SCons 0.98.) However, the values returned are still the values of the
variablesin the named var s at the point Ret ur n was called.

Iy
=== SCONS 334



Examples:

# Returns no val ues (eval uates Fal se)
Ret urn()

# Returns the value of the '
Ret urn("foo")

foo' Python variabl e.
# Returns the val ues of the Python variables 'foo' and 'bar'.
Return("foo", "bar")

# Returns the val ues of Python variables 'vall' and 'val2'.
Return('val 1 val 2")

Scanner (functi on, [ name, ar gunent , skeys, pat h_functi on, node_cl ass,
node_factory, scan_check, recursive])
env.Scanner (f unct i on, [ namne, ar gunent, skeys, pat h_f uncti on, node_cl ass,

node_factory, scan_check, recursive])
Creates a Scanner object for the specified f unct i on. See manpage section "Scanner Objects’ for a complete
explanation of the arguments and behavior.

SConscri pt(scripts, [exports, variant _dir, duplicate, nust_exist])
env.SConscript(scripts, [exports, variant_dir, duplicate, nust_exist])
SConscri pt (di rs=subdirs, [nane=scriptnane, exports, variant_dir, duplicate,
nmust _exi st])
env.SConscri pt (di rs=subdi rs, [nane=scriptname, exports, variant _dir, duplicate,
nmust _exi st])
Executes one or more subsidiary SConscript (configuration) files. There are two waysto call the SConscr i pt
function.

Thefirst caling style is to supply one or more SConscript file names as the first (positional) argument. A single
script may be specified as a string; multiple scripts must be specified as a list of strings (either explicitly or as
created by afunction like Spl i t ). Examples:

SConscri pt (' SConscript') # run SConscript in the current directory
SConscri pt (' src/ SConscript') # run SConscript in the src directory
SConscript (['src/ SConscript', 'doc/SConscript'])

config = SConscript (' MyConfig.py')

The other calling style is to omit the positional argument naming scripts and instead specify a list of directory
names using the di r s keyword argument. In this case, scons will execute a subsidiary configuration file named
SConscri pt in each of the specified directories. You may specify a name other than SConscri pt by
supplying an optional nanme=scr i pt nane keyword argument. The first three examples below have the same
effect as the first three examples above:

SConscript(dirs=".") # run SConscript in the current directory
SConscript(dirs="src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])

SConscri pt (di rs=['subl', 'sub2'], name='MySConscript')

The optional export s keyword argument provides a string or list of strings representing variable names, or
a dictionary of named values, to export. For the first calling style only, a second positional argument will be
interpreted as expor t s; the second calling style must use the keyword argument form for exports. These

Iy
=== SCONS 335



variables are locally exported only to the called SConscript file(s) and do not affect the global pool of variables
managed by the Expor t function. The subsidiary SConscript files must usethe | nport function to import the
variables. Examples:

foo = SConscri pt (' sub/ SConscript', exports='env')

SConscript (' dir/SConscript', exports=['env', 'variable'])
SConscri pt (dirs="subdir', exports='env variable')
SConscript(dirs=['one', "two', 'three'], exports=' shared_info')

If theoptional var i ant _di r argument is present, it causes an effect equivalent tothe Var i ant Di r function,
but in effect only within the scope of the SConscri pt cal. Thevari ant _di r argumentisinterpreted relative
to the directory of the calling SConscript file. The source directory isthe directory in which the called SConscript
file resides and the SConscript fileis evaluated asif it wereinthevar i ant _di r directory. Thus:

SConscri pt (' src/ SConscript', variant _dir="build")

is equivalent to:

VariantDir('build , "src')
SConscri pt (' bui | d/ SConscri pt')

If the sources are in the same directory asthe SConst r uct ,

SConscri pt (' SConscript', variant_dir="build")

is equivalent to:

VariantDir("build , ".")
SConscri pt (' bui | d/ SConscri pt')

The optional dupl i cat e argument is interpreted as for Vari ant Di r. If the vari ant _di r argument is
omitted, the dupl i cat e argument is ignored. See the description of Var i ant Di r for additional details and
restrictions.

If the optional nust _exi st is Tr ue, causes an exception to be raised if a requested SConscript file is not
found. The current default is Fal se, causing only awarning to be emitted, but this default is deprecated (since
3.1). For scripts which truly intend to be optional, transition to explicitly supplying nust _exi st =Fal se to
the SConscri pt call.

Here are some composite examples:

# collect the configuration information and use it to build src and doc
shared_i nfo = SConscri pt (" MyConfi g. py')

SConscri pt (' src/ SConscript', exports='shared_info')

SConscri pt (' doc/ SConscript', exports='shared_info')

# bui |l d debuggi ng and production versions. SConscri pt
# can use Dir('.").path to determ ne vari ant.
SConscri pt (' SConscript', variant_dir=" debug', duplicate=0)

Iy
=== SCONS 336



SConscri pt (' SConscript', variant_dir="prod , duplicate=0)

# buil d debuggi ng and production versions. SConscri pt
# is passed flags to use.

opts = { 'CPPDEFINES : ['DEBUG ], 'CCFLAGS : '-pgdb' }
SConscri pt (' SConscript', variant _dir="debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES' : ['NODEBUG], 'CCFLAGS : '-0O }

SConscri pt (' SConscript', variant _dir="prod' , duplicate=0, exports=opts)

# build comon docunentation and conpile for different architectures
SConscri pt (' doc/ SConscri pt', variant _dir="build/ doc', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="buil d/ x86"', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="build/ ppc', duplicate=0)

SConscri pt returns the values of any variables named by the executed SConscript file(s) in arguments to the
Ret ur n function. If asingle SConscr i pt call causes multiple scriptsto be executed, thereturn valueisatuple
containing the returns of each of the scripts. If an executed script does not explicitly call Ret ur n, it returnsNone.

SConscri pt Chdi r (val ue)
By default, scons changes its working directory to the directory in which each subsidiary SConscript file lives
whilereading and processing that script. Thisbehavior may be disabled by specifying an argument which evaluates
false, in which case scons will stay in the top-level directory while reading all SConscript files. (This may be
necessary when building from repositories, when all the directories in which SConscript files may be found don't
necessarily exist locally.) Y ou may enable and disablethisability by calling SConscr i pt Chdi r multipletimes.

Example:

SConscri pt Chdi r (Fal se)

SConscri pt (' foo/ SConscript') # will not chdir to foo
SConscri pt Chdi r ( True)

SConscri pt (' bar/ SConscript') # will chdir to bar

SConsi gnFi | e( namre, dbm nodul e])

env.SConsi gnFi | e([ name, dbm nodul e])
Specify where to store the SCons file signature database, and which database format to use. This may be useful
to specify aternate database files and/or file locations for different types of builds.

The optional nane argument is the base name of the database file(s). If not an absolute path name, these are
placed relative to the directory containing the top-level SConst ruct file. The default is. sconsi gn. The
actual database file(s) stored on disk may have an appropriate suffix appended by the chosen dbm nodul e

Theoptional dbm _nodul e argument specifieswhich Python database module to use for reading/writing thefile.
The module must be imported first; then the imported module name is passed as the argument. The default is a
custom SCons. dbl i t e module that uses pickled Python data structures, which works on all Python versions.
See documentation of the Python dbmmodule for other available types.

If called with no arguments, the database will defaultto. sconsi gn. dbl i t e inthetop directory of the project,
which isalso the default if if SConsi gnFi | e isnot called.

The setting is global, so the only difference between the global function and the environment method form is
variable expansion on nane. There should only be one active call to this function/method in a given build setup.

If nane is set to None, sconswill store file signatures in a separate . sconsi gn filein each directory, notina
single combined database file. Thisis abackwards-compatibility meaure to support what was the default behavior

Iy
=== SCONS 337



env

Set
env

prior to SCons 0.97 (i.e. before 2008). Use of this mode is discouraged and may be deprecated in a future SCons
release.

Examples:

# Explicitly stores signatures in ".sconsign.dblite"
# in the top-level SConstruct directory (the default behavior).
SConsi gnFi | e()

# Stores signatures in the file "etc/scons-signatures"
# relative to the top-Ievel SConstruct directory.

# SCons will add a database suffix to this nane.
SConsi gnFi | e("et c/ scons-si gnat ures")

# Stores signatures in the specified absolute file nane.
# SCons will add a database suffix to this nane.
SConsi gnFi | e("/ hone/ ne/ SCons/ si gnat ur es")

# Stores signatures in a separate .sconsign file
# in each directory.
SConsi gnFi | e( None)

# Stores signatures in a GNU dbm format .sconsign file
i mport dbm gnu
SConsi gnFi | e(dbm nodul e=dbm gnu)

Set Def aul t (key=val, [...])
Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env. Set Def aul t (FOO=' f 00" )
if "FOO not in env:
env[' FOO ] = 'foo

Opt i on(nane, val ue)

.Set Opti on(nane, val ue)

Sets scons option variable nane to val ue. These options are al also settable via command-line options but the
variable name may differ from the command-line option name - see the table for correspondences. A value set
via command-line option will take precedence over one set with Set Qpt i on, which allows setting a project
default in the scripts and temporarily overriding it via command line. Set Qpt i on calls can aso be placed in
thesite_init. py file

See the documentation in the manpage for the corresponding command line option for information about each
specific option. The val ue parameter is mandatory, for option values which are boolean in nature (that is, the
command line option does not take an argument) use aval ue which evaluates to true (e.g. Tr ue, 1) or false
(eg. Fal se, 0).

Options which affect the reading and processing of SConscript files are not settable using Set Opt i on since
those files must be read in order to find the Set Opt i on call in thefirst place.

The settable variables with their associated command-line options are:

Settable name Command-line options Notes

cl ean -c,--clean,--renove

~

'—‘-‘ SCONS 338



Settable name Command-line options Notes
di skcheck - -di skcheck

duplicate --duplicate

experi nent al - -experi nment al since 4.2

hash_chunksi ze

- - hash- chunksi ze

Actually sets nmd5_chunksi ze.
since 4.2

hash_f or mat --hash- f or mat since 4.2

hel p -h,--help

implicit_cache --inplicit-cache

i mplicit_deps_changed --inmplicit-deps-changed |Also sets inplicit_cache.

(settable since 4.2)

i mplicit_deps_unchanged |--inplicit-deps- Also sets inplicit_cache.
unchanged (settable since 4.2)

max_drift --max-drift

md5_chunksi ze - -md5- chunksi ze

no_exec -n, --no-exec, --just-
print,--dry-run,--recon

no_progress -Q See?

num j obs -j,--jobs

random --random

si |l ent -s,--silent,--quiet

stack_si ze

--stack-size

war n

--warn

4f no_pr ogr ess isset viaSet Opt i on in an SConscript file (but not if setinasi t e_i ni t . py file) there will still be an initial status
message about reading SConscript files since SCons has to start reading them before it can see the Set Opt i on.

Example:

Set Option(' max_drift', 0)

Si deEffect (si de_effect, target)
env.Si deEf f ect (si de_effect, target)

Declaressi de_ef f ect asasideeffect of buildingt ar get . Bothsi de_ef f ect andt ar get canbealist,
afile name, or anode. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB fileis created as a side effect of building the .obj filesfor a static library,
and various log files are created updated as side effects of various TeX commands. If atarget is a side effect of
multiple build commands, scons will ensure that only one set of commands is executed at a time. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the si de_ef f ect target
is not automatically removed when the t ar get is removed by the - ¢ option. (Note, however, that the
si de_ef f ect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
thesi de_ef f ect iscleaned whenever aspecifict ar get iscleaned, you must specify this explicitly with the
Cl ean or env. d ean function.

This function returns the list of side effect Node objects that were successfully added. If the list of side effects
contained any side effects that had already been added, they are not added and included in the returned list.

'—‘-' SCONS

339



Spl
env

env

it(arg)

Split(arg)

If ar g is astring, splits on whitespace and returns a list of strings without whitespace. This mode is the most
common case, and can be used to split alist of filenames (for example) rather than having to type them as alist of
individually quoted words. If ar g isalist or tuplereturnsthe list or tuple unchanged. If ar g is any other type of
object, returns a list containing just the object. These non-string cases do not actually do any spliting, but allow
an argument variable to be passed to Spl i t without having to first check its type.

Example:
files = Split("fl.c f2.c f3.c")
files = env.Split("fd4.c f5.c f6.c")
files = Split("""
f7.c
f8.c
fo.c
")
Subst (i nput, [raw, target, source, conv])

Performs construction variable interpolation (substitution) on i nput , which can be a string or a sequence.
Substitutable elements take the form ${ expr essi on}, athough if there is no ambiguity in recognizing the
element, the braces can be omitted. A literal $ can be entered by using $3$.

By default, leading or trailing white space will be removed from the result, and all sequences of white space will
be compressed to asingle space character. Additionally, any $( and $) character sequenceswill be stripped from
the returned string, The optional r aw argument may be set to 1 if you want to preserve white space and $( -$)

sequences. The r aw argument may be set to 2 if you want to additionally discard al characters between any $(

and $) pairs (asisdone for signature calculation).

If i nput isasequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will bereturned as alist.

The optional t ar get and sour ce keyword arguments must be set to lists of target and source nodes,
respectively, if you want the STARGET, $TARGETS, $SOURCE and $SOURCES to be available for expansion.
Thisisusually necessary if you are calling env. subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use a Python lambda
expression to pass in an unnamed function that simply returns its unconverted argument.

Example:

print (env. subst("The C conpiler is: $CC'))

def conpile(target, source, env):
sourceDir = env. subst (
"${SOURCE. srcdir}",
t ar get =t ar get ,
sour ce=sour ce

)

sour ce_nodes = env. subst (' $EXPAND _TO NODELI ST', conv=l anbda x: x)

~

'—‘-‘ SCONS 340



Tag(node, tags)

Annotates file or directory Nodes with information about how the Package Builder should package those files
or directories. All Node-level tags are optional.

Examples:

# makes sure the built library will be installed with 644 file access node
Tag(Library('lib.c"), UN X ATTR="00644")

# marks file2.txt to be a docunentation file
Tag('file2.txt', DOC)

Tool (nanme, [tool path, **kwargs])
env.Tool (nane, [tool path, **kwargs])

Va

Locates the tool specification module name and returns a callable tool object for that tool. The tool module is
searched for in standard locations and in any paths specified by the optional t ool pat h parameter. The standard
locations are SCons own interna path for tools plus the toolpath, if any (see the Tools section in the manual
page for more details). Any additional keyword arguments kwar gs are passed to the tool module'sgener at e
function during tool object construction.

When called, the tool object updates a construction environment with construction variables and arranges any
other initialization needed to use the mechanisms that tool describes.

When theenv. Tool formisused, the tool object isautomatically called to update env and the value of t ool
is appended to the $TOOLS construction variable in that environment.

Changedinversion 4.2: env. Tool now returnsthetool object, previoudly it did not return (i.e. returned None).

Examples:

env. Tool (' gcc')
env. Tool (' opengl', tool path=["'build/tools'])

When the global function Tool formisused, thetool object isconstructed but not called, asit lacks the context of
an environment to update. Thetool object can bepassedtoan Envi r onnment or Cl one call aspart of thet ool s
keyword argument, in which case the tool is applied to the environment being constructed, or it can be called
directly, in which case a construction environment to update must be passed as the argument. Either approach will
also update the $TOOL S construction variable.

Examples:

env = Environment (tool s=[ Tool (' msvc')])

env = Environment ()

msvct ool = Tool (' nmsvc')

msvct ool (env) # adds 'nsvc' to the TOOLS vari abl e
gltool = Tool (' opengl', toolpath = ['"tools'])
gltool (env) # adds 'opengl' to the TOOLS vari abl e

i dat eOpti ons([t hrow_excepti on=Fal se])
Check that all the options specified on the command line are either defined by SCons itself or defined by calls
to AddOpt i on.

This function should only be called after the last AddOpt i on call inyour SConscr i pt logic.

~

'—‘-‘ SCONS 341



Val
env

Be aware that some tools call AddOpt i on, if you are getting error messages for arguments that they add, you
will need to ensure that you load those tools before you call Val i dat eQpt i ons.

If there are any command line options not defined, calling this function will cause SConsto issue an error message
and then exit with an error exit status.

If the optional t hr ow_excepti on isTrue, Val i dat eQpt i ons will raise a SConsBadQpt i onEr r or
exception. Thiswould allow the calling SConscr i pt logic can catch that exception and handle invalid options
itself.

Example:
try:

Val i dat eOpti ons(t hrow_excepti on=Tr ue)
except SConsBadOpti onError as e:

print("Parser is SConsOptionParser: %" % (i sinstance(e.parser, SConsOptionParser)))

print("Message is :9%" %e.opt_str)
Exit(3)

This function is useful to force SCons to fail fast before you execute any expensive logic later in your build
logic. For exampleif you specify build options via any flags, a simple typo could yield the incorrect build option
throughout your entire build.

scons --conpil ers=mngw (the correct flag is --conpiler)

Could cause SCons to run configure steps with the incorrect compiler. Costing developer time trying to track
down why the configure logic failed with a compiler which should work.

New in version 4.5.0

ue(val ue, [built_value], [nane])

Val ue(val ue, [built _value], [nane])

Returns a Node object representing the specified Python value. Value Nodes can be used as dependencies
of targets. If the result of calling str(val ue) changes between SCons runs, any targets depending on
Val ue(val ue) will berebuilt. (Thisistrue even when using timestampsto decideif files are up-to-date.) When
using timestamp source signatures, Value Nodes' timestamps are equal to the system time when the Node is
created.

The returned Value Node object has awr i t e() method that can be used to "build" a Value Node by setting a
new value. The optional bui | t _val ue argument can be specified when the Value Node is crested to indicate
the Node should already be considered "built." Thereisa corresponding r ead() method that will return the built
value of the Node.

The optional nane parameter can be provided as an alternative namefor theresulting Val ue node; thisisadvised
if theval ue parameter cannot be converted to a string.

Changed in version 4.0: the name parameter was added.

Examples:

env = Envi ronnent ()

~

'—‘—' SCONS 342



def create(target, source, env):
# A function that will wite a 'prefix=$SOURCE
# string into the file name specified as the
# $TARCET.
with open(str(target[0]), 'wb') as f:
f.wite(' prefix=" + source[0].get_contents())

# Fetch the prefix= argunent, if any, fromthe comuand
# line, and use /usr/local as the default.
prefix = ARGUVENTS. get (' prefix', '/usr/local")

# Attach a .Config() builder for the above function action
# to the construction environnent.

env[' BU LDERS' ][' Config'] = Buil der(acti on=create)

env. Confi g(target="package-config', source=Val ue(prefix))

def build_val ue(target, source, env):
# A function that "builds" a Python Value by updating
# the Python value with the contents of the file
# specified as the source of the Builder call ($SOURCE).
target[0] .wite(source[0].get_contents())

out put = env. Val ue(' before')
i nput = env. Value('after"')

# Attach a .UpdateVal ue() builder for the above function

# action to the construction environnent.

env[' BUI LDERS' ][ ' Updat eVal ue'] = Buil der (acti on=bui | d_val ue)
env. Updat eVal ue(t ar get =Val ue(out put), source=Val ue(i nput))

VariantDir(variant _dir, src_dir, [duplicate])

env.VariantDir(variant _dir, src_dir, [duplicate])
Sets up a mapping to define a variant build directory in vari ant _dir. src_dir may not be underneath
variant_dir. A Variant Dir mapping is global, even if caled using the env. Vari antDi r form.
Vari ant Di r canbecalled multipletimeswiththesamesr c_di r toset up multiplevariant buildswith different
options.

Note if vari ant _di r isnot under the project top directory, target selection rules will not pick targets in the
variant directory unlessthey are explicitly specified.

When filesin vari ant _di r are referenced, SCons backfills as needed with files from sr c_di r to create a
complete build directory. By default, SCons physically duplicates the source files, SConscript files, and directory
structure as needed into the variant directory. Thus, abuild performed in the variant directory is guaranteed to be
identical to a build performed in the source directory even if intermediate source files are generated during the
build, or if preprocessors or other scanners search for included files using paths relative to the source file, or if
individual compilers or other invoked tools are hard-coded to put derived files in the same directory as source
files. Only the files SCons cal culates are needed for the build are duplicated into var i ant _di r . If possible on
the platform, the duplication is performed by linking rather than copying. This behavior is affected by the - -
dupl i cat e command-line option.

Duplicating the source files may be disabled by setting the dupl i cat e argument to Fal se. This will cause
SCons to invoke Builders using the path names of source filesin src_di r and the path names of derived
files within vari ant _di r. This is more efficient than duplicating, and is safe for most builds; revert to
dupl i cat e=Tr ue if it causes problems.

Iy
=== SCONS 343



Var i ant Di r works most naturally when used with a subsidiary SConscript file. The subsidiary SConscript
file must be called as if it were in vari ant _di r, regardiess of the value of dupl i cat e. When calling
an SConscript file, you can use the exports keyword argument to pass parameters (individually or as an
appropriately set up environment) so the SConscript can pick up the right settings for that variant build. The
SConscript must | npor t these to use them. Example:

envl
env2

Envi ronnent (...settings for variantl...)
Envi ronnent (...settings for variant2...)

# run src/SConscript in two variant directories

VariantDir (' build/variantl', 'src')
SConscri pt (' bui Il d/vari ant 1/ SConscript', exports={"env": envl})
VariantDir (' build/variant2', 'src')

SConscri pt (' bui I d/ vari ant 2/ SConscript', exports={"env": env2})

See dso the SConscri pt function for another way to specify a variant directory in conjunction with calling
asubsidiary SConscript file.

More examples:

# use nanes in the build directory, not the source directory
VariantDir('build', 'src', duplicate=0)
Progran(' bui |l d/ prog', 'build/source.c')

# this builds both the source and docs in a separate subtree
VariantDir('build , '.', duplicate=0)
SConscri pt (dirs=["'build/src',"'build/doc'])

# same as previous exanple, but only uses SConscri pt
SConscript (dirs="src', variant_dir="build/src', duplicate=0)
SConscri pt (di rs="doc', variant _dir="buil d/doc', duplicate=0)

Wer el s(program [path, pathext, reject])
env.\Werel s(program [path, pathext, reject])

Searches for the specified executable pr ogr am returning the full path to the program or None.

When called as a construction environment method, searches the paths in the pat h keyword argument, or if
None (the default) the paths listed in the construction environment (env[' ENV' ] [ ' PATH ] ). The externa
environment's path list (0s. envi ron[ ' PATH ]) isused as a falback if the key env[' ENV' ][ ' PATH ]
does not exist.

On Windows systems, searches for executable programs with any of the file extensions listed in
the pat hext keyword argument, or if None (the default) the pathname extensions listed in the
construction environment (env[ ' ENV' ][ ' PATHEXT' ] ). The external environment's pathname extensionslist
(os. environ[' PATHEXT' ] ) isused asafalback if thekey env[' ENV' ] [' PATHEXT' ] doesnot exist.

When called as a global function, uses the external environment's path os. envi ron[' PATH ] and path
extensions0s. envi ron[ ' PATHEXT' |, respectively, if pat h and pat hext are None.

Will not select any path name or namesin the optional r ej ect list.

~

'—‘-‘ SCONS 344



Appendix E. Handling Common Tasks

There is a common set of simple tasks that many build configurations rely on as they become more complex. Most
build tools have specia purpose constructsfor performing thesetasks, but since SConscr i pt filesare Python scripts,
you can use more flexible built-in Python servicesto perform these tasks. This appendix lists a number of these tasks
and how to implement them in Python and SCons.

Example E.1. Wildcard globbing to create a list of filenames

files = d ob(wi | dcard)

Example E.2. Filename extension substitution

i mport os. path
filename = os.path.splitext(filenane)[0]+extension

Example E.3. Appending a path prefix to alist of filenames

i mport os. path
filenames = [os.path.join(prefix, x) for x in fil enanes]

Example E.4. Substituting a path prefix with another one

if filename.find(old_prefix) ==
filename = filenane.replace(ol d_prefix, new prefix)

Example E.5. Filtering a filenamelist to exclude/retain only a specific set of extensions

i mport os. path
filenames = [x for x in filenanmes if os.path.splitext(x)[1] in extensions]

Example E.6. The " backtick function”: run a shell command and captur e the output

i mport subprocess
out put = subprocess. check_out put (command)

Iy
=== SCONS 345



Example E.7. Generating sour ce code: how code can be generated and used by SCons

The Copy builders here could be any arbitrary shell or python function that produces one or more files. This example
shows how to create those files and use them in SCons.

#### SConstruct
env = Environnent ()
env. Append( CPPPATH = "#")

## Header exanpl e
env. Append( BU LDERS =
{' Copyl' : Builder(action = 'cat < $SOURCE > $TARGET',
suffix=".h", src_suffix=".bar')})
env. Copyl('test.bar') # produces test.h fromtest.bar.
env. Program(' app',' main.cpp') # indirectly depends on test. bar

## Source file exanple
env. Append( BU LDERS =
{' Copy2' : Builder(action = "'cat < $SOURCE > $TARGET',
suf fix=".cpp', src_suffix=".bar2")})
foo = env. Copy2(' foo.bar2') # produces foo.cpp from foo. bar2.
env. Progran(' app2',[' mai n2.cpp'] + foo) # conpiles nmain2. cpp and foo.cpp into app2.

Where main.cpp looks like this:
#i nclude "test.h"

produces this:

% scons -Q

cat < test.bar > test.h

CC -0 app main.cpp

cat < foo.bar2 > foo.cpp

cCc -0 app2 mai n2.cpp foo.cpp

Iy
=== SCONS 346



